Ziduo Yang, Xiaoqing Liu, Xiuying Zhang, Pengru Huang, Kostya S. Novoselov, Lei Shen
{"title":"基于缺陷信息神经网络的晶体缺陷建模","authors":"Ziduo Yang, Xiaoqing Liu, Xiuying Zhang, Pengru Huang, Kostya S. Novoselov, Lei Shen","doi":"10.1038/s41524-025-01728-w","DOIUrl":null,"url":null,"abstract":"<p>Most AI-for-Materials research to date has focused on ideal crystals, whereas real-world materials inevitably contain defects that play a critical role in modern functional technologies. The defects break geometric symmetry and increase interaction complexity, posing particular challenges for traditional ML models. Here, we introduce Defect-Informed Equivariant Graph Neural Network (DefiNet), a model specifically designed to accurately capture defect-related interactions and geometric configurations in point-defect structures. DefiNet achieves near-DFT-level structural predictions in milliseconds using a single GPU. To validate its accuracy, we perform DFT relaxations using DefiNet-predicted structures as initial configurations and measure the residual ionic steps. For most defect structures, regardless of defect complexity or system size, only 3 ionic steps are required to reach the DFT-level ground state. Finally, comparisons with scanning transmission electron microscopy (STEM) images confirm DefiNet’s scalability and extrapolation beyond point defects, positioning it as a valuable tool for defect-focused materials research.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"2 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling crystal defects using defect informed neural networks\",\"authors\":\"Ziduo Yang, Xiaoqing Liu, Xiuying Zhang, Pengru Huang, Kostya S. Novoselov, Lei Shen\",\"doi\":\"10.1038/s41524-025-01728-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most AI-for-Materials research to date has focused on ideal crystals, whereas real-world materials inevitably contain defects that play a critical role in modern functional technologies. The defects break geometric symmetry and increase interaction complexity, posing particular challenges for traditional ML models. Here, we introduce Defect-Informed Equivariant Graph Neural Network (DefiNet), a model specifically designed to accurately capture defect-related interactions and geometric configurations in point-defect structures. DefiNet achieves near-DFT-level structural predictions in milliseconds using a single GPU. To validate its accuracy, we perform DFT relaxations using DefiNet-predicted structures as initial configurations and measure the residual ionic steps. For most defect structures, regardless of defect complexity or system size, only 3 ionic steps are required to reach the DFT-level ground state. Finally, comparisons with scanning transmission electron microscopy (STEM) images confirm DefiNet’s scalability and extrapolation beyond point defects, positioning it as a valuable tool for defect-focused materials research.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01728-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01728-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modeling crystal defects using defect informed neural networks
Most AI-for-Materials research to date has focused on ideal crystals, whereas real-world materials inevitably contain defects that play a critical role in modern functional technologies. The defects break geometric symmetry and increase interaction complexity, posing particular challenges for traditional ML models. Here, we introduce Defect-Informed Equivariant Graph Neural Network (DefiNet), a model specifically designed to accurately capture defect-related interactions and geometric configurations in point-defect structures. DefiNet achieves near-DFT-level structural predictions in milliseconds using a single GPU. To validate its accuracy, we perform DFT relaxations using DefiNet-predicted structures as initial configurations and measure the residual ionic steps. For most defect structures, regardless of defect complexity or system size, only 3 ionic steps are required to reach the DFT-level ground state. Finally, comparisons with scanning transmission electron microscopy (STEM) images confirm DefiNet’s scalability and extrapolation beyond point defects, positioning it as a valuable tool for defect-focused materials research.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.