分子过程多尺度建模的神经主方程框架:在原子尺度等离子体过程中的应用

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shoubhanik Nath, Joseph R. Vella, David B. Graves, Ali Mesbah
{"title":"分子过程多尺度建模的神经主方程框架:在原子尺度等离子体过程中的应用","authors":"Shoubhanik Nath, Joseph R. Vella, David B. Graves, Ali Mesbah","doi":"10.1038/s41524-025-01677-4","DOIUrl":null,"url":null,"abstract":"<p>Plasma-surface interactions (PSI) play a crucial role in microelectronics fabrication; however, their multiscale nature and array of complex, often unknown interactions make computational modeling of PSIs extremely difficult. To this end, we propose a general neural master equation (NME) framework that uses master equations to describe the dynamics of a molecular process, wherein neural networks learned from atomistic simulations represent unknown transitions between different system states. By leveraging the physics-based structure of master equations and data-driven state transitions, the NME framework promotes generalizability and physics interpretability, and can bridge disparate length and time scales. The framework is demonstrated for multiscale modeling of Si atomic layer etching and reactive ion etching, where the learned NME-based surface kinetic models exhibit good predictive and extrapolative capabilities for predicting experimentally relevant observables as a function of process parameters. The NME-based surface kinetic models obey physical constraints, which are violated in models based on neural ordinary differential equations. The proposed NME framework for multiscale modeling of molecular processes can pave the way for the discovery of new chemistries and materials in atomic-scale plasma processes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"670 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural master equation framework for multiscale modeling of molecular processes: application to atomic-scale plasma processes\",\"authors\":\"Shoubhanik Nath, Joseph R. Vella, David B. Graves, Ali Mesbah\",\"doi\":\"10.1038/s41524-025-01677-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plasma-surface interactions (PSI) play a crucial role in microelectronics fabrication; however, their multiscale nature and array of complex, often unknown interactions make computational modeling of PSIs extremely difficult. To this end, we propose a general neural master equation (NME) framework that uses master equations to describe the dynamics of a molecular process, wherein neural networks learned from atomistic simulations represent unknown transitions between different system states. By leveraging the physics-based structure of master equations and data-driven state transitions, the NME framework promotes generalizability and physics interpretability, and can bridge disparate length and time scales. The framework is demonstrated for multiscale modeling of Si atomic layer etching and reactive ion etching, where the learned NME-based surface kinetic models exhibit good predictive and extrapolative capabilities for predicting experimentally relevant observables as a function of process parameters. The NME-based surface kinetic models obey physical constraints, which are violated in models based on neural ordinary differential equations. The proposed NME framework for multiscale modeling of molecular processes can pave the way for the discovery of new chemistries and materials in atomic-scale plasma processes.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"670 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01677-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01677-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

等离子体表面相互作用(PSI)在微电子制造中起着至关重要的作用;然而,它们的多尺度性质和复杂的阵列,往往是未知的相互作用使得psi的计算建模非常困难。为此,我们提出了一个通用的神经主方程(NME)框架,该框架使用主方程来描述分子过程的动力学,其中从原子模拟中学习的神经网络代表不同系统状态之间的未知转换。通过利用基于物理的主方程结构和数据驱动的状态转换,NME框架提高了通用性和物理可解释性,并且可以跨越不同的长度和时间尺度。该框架用于Si原子层刻蚀和反应离子刻蚀的多尺度建模,其中学习到的基于nme的表面动力学模型在预测实验相关观测值作为工艺参数的函数方面表现出良好的预测和外推断能力。基于神经网络的表面动力学模型遵循物理约束,而基于神经网络常微分方程的模型则不遵循物理约束。提出的用于分子过程多尺度建模的NME框架可以为在原子尺度等离子体过程中发现新的化学和材料铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A neural master equation framework for multiscale modeling of molecular processes: application to atomic-scale plasma processes

A neural master equation framework for multiscale modeling of molecular processes: application to atomic-scale plasma processes

Plasma-surface interactions (PSI) play a crucial role in microelectronics fabrication; however, their multiscale nature and array of complex, often unknown interactions make computational modeling of PSIs extremely difficult. To this end, we propose a general neural master equation (NME) framework that uses master equations to describe the dynamics of a molecular process, wherein neural networks learned from atomistic simulations represent unknown transitions between different system states. By leveraging the physics-based structure of master equations and data-driven state transitions, the NME framework promotes generalizability and physics interpretability, and can bridge disparate length and time scales. The framework is demonstrated for multiscale modeling of Si atomic layer etching and reactive ion etching, where the learned NME-based surface kinetic models exhibit good predictive and extrapolative capabilities for predicting experimentally relevant observables as a function of process parameters. The NME-based surface kinetic models obey physical constraints, which are violated in models based on neural ordinary differential equations. The proposed NME framework for multiscale modeling of molecular processes can pave the way for the discovery of new chemistries and materials in atomic-scale plasma processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信