通过机器学习和纳米级分析将合金成分与微观结构演变联系起来的多尺度计算框架

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jaemin Wang, Hyeonseok Kwon, Sang-Ho Oh, Jae Heung Lee, Dae Won Yun, Hyungsoo Lee, Seong-Moon Seo, Young-Soo Yoo, Hi Won Jeong, Hyoung Seop Kim, Byeong-Joo Lee
{"title":"通过机器学习和纳米级分析将合金成分与微观结构演变联系起来的多尺度计算框架","authors":"Jaemin Wang, Hyeonseok Kwon, Sang-Ho Oh, Jae Heung Lee, Dae Won Yun, Hyungsoo Lee, Seong-Moon Seo, Young-Soo Yoo, Hi Won Jeong, Hyoung Seop Kim, Byeong-Joo Lee","doi":"10.1038/s41524-025-01730-2","DOIUrl":null,"url":null,"abstract":"<p>Achieving targeted microstructures through composition design is a core challenge in developing structural materials for high-performance applications. This study introduces a multiscale Integrated Computational Materials Engineering (ICME) framework that combines CALPHAD-based thermodynamic modeling, machine learning, molecular dynamics, and diffusion kinetics to link alloy chemistry to microstructural evolution. Machine learning models trained on 750,000 CALPHAD-derived datapoints enabled rapid screening of two billion compositions based on thermodynamic criteria. An advanced screening step incorporated nanoscale physical descriptors that capture mechanisms governing precipitate coarsening and dynamic recrystallization. Applied to wrought Ni-based superalloys, the framework identified twelve compositions predicted to form fine intragranular γ′ precipitates within coarse γ grains; one was experimentally validated, with microscopy confirming the predicted microstructure. While demonstrated for Ni-based systems, the methodology is broadly generalizable. This work highlights the power of integrating high-throughput composition screening with atomistic-scale evaluation to accelerate microstructure-driven materials design beyond equilibrium thermodynamics.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale computational framework linking alloy composition to microstructure evolution via machine learning and nanoscale analysis\",\"authors\":\"Jaemin Wang, Hyeonseok Kwon, Sang-Ho Oh, Jae Heung Lee, Dae Won Yun, Hyungsoo Lee, Seong-Moon Seo, Young-Soo Yoo, Hi Won Jeong, Hyoung Seop Kim, Byeong-Joo Lee\",\"doi\":\"10.1038/s41524-025-01730-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving targeted microstructures through composition design is a core challenge in developing structural materials for high-performance applications. This study introduces a multiscale Integrated Computational Materials Engineering (ICME) framework that combines CALPHAD-based thermodynamic modeling, machine learning, molecular dynamics, and diffusion kinetics to link alloy chemistry to microstructural evolution. Machine learning models trained on 750,000 CALPHAD-derived datapoints enabled rapid screening of two billion compositions based on thermodynamic criteria. An advanced screening step incorporated nanoscale physical descriptors that capture mechanisms governing precipitate coarsening and dynamic recrystallization. Applied to wrought Ni-based superalloys, the framework identified twelve compositions predicted to form fine intragranular γ′ precipitates within coarse γ grains; one was experimentally validated, with microscopy confirming the predicted microstructure. While demonstrated for Ni-based systems, the methodology is broadly generalizable. This work highlights the power of integrating high-throughput composition screening with atomistic-scale evaluation to accelerate microstructure-driven materials design beyond equilibrium thermodynamics.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01730-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01730-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过成分设计实现目标微结构是开发高性能结构材料的核心挑战。本研究引入了一个多尺度集成计算材料工程(ICME)框架,该框架结合了基于calphad的热力学建模、机器学习、分子动力学和扩散动力学,将合金化学与微观结构演变联系起来。在75万个calphad衍生数据点上训练的机器学习模型,能够根据热力学标准快速筛选20亿种成分。先进的筛选步骤包括纳米级物理描述符,捕获控制沉淀粗化和动态再结晶的机制。应用于变形镍基高温合金,该框架确定了12种成分,预测在粗γ晶粒内形成细小的晶内γ′沉淀;一种是通过实验验证的,用显微镜证实了预测的微观结构。虽然演示了基于ni的系统,但该方法具有广泛的通用性。这项工作强调了将高通量成分筛选与原子尺度评估相结合的力量,以加速微观结构驱动的材料设计,超越平衡热力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale computational framework linking alloy composition to microstructure evolution via machine learning and nanoscale analysis

Multiscale computational framework linking alloy composition to microstructure evolution via machine learning and nanoscale analysis

Achieving targeted microstructures through composition design is a core challenge in developing structural materials for high-performance applications. This study introduces a multiscale Integrated Computational Materials Engineering (ICME) framework that combines CALPHAD-based thermodynamic modeling, machine learning, molecular dynamics, and diffusion kinetics to link alloy chemistry to microstructural evolution. Machine learning models trained on 750,000 CALPHAD-derived datapoints enabled rapid screening of two billion compositions based on thermodynamic criteria. An advanced screening step incorporated nanoscale physical descriptors that capture mechanisms governing precipitate coarsening and dynamic recrystallization. Applied to wrought Ni-based superalloys, the framework identified twelve compositions predicted to form fine intragranular γ′ precipitates within coarse γ grains; one was experimentally validated, with microscopy confirming the predicted microstructure. While demonstrated for Ni-based systems, the methodology is broadly generalizable. This work highlights the power of integrating high-throughput composition screening with atomistic-scale evaluation to accelerate microstructure-driven materials design beyond equilibrium thermodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信