带变压器和自适应注意图的改进U-NET3+肺分割算法。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
V Joseph Raj, P Christopher
{"title":"带变压器和自适应注意图的改进U-NET3+肺分割算法。","authors":"V Joseph Raj, P Christopher","doi":"10.1177/08953996251351623","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of lung regions from CT scan images is critical for diagnosing and monitoring respiratory diseases. This study introduces a novel hybrid architecture Adaptive Attention U-NetAA, which combines the strengths of U-Net3 + and Transformer based attention mechanisms models for high-precision lung segmentation. The U-Net3 + module effectively segments the lung region by leveraging its deep convolutional network with nested skip connections, ensuring rich multi-scale feature extraction. A key innovation is introducing an adaptive attention mechanism within the Transformer module, which dynamically adjusts the focus on critical regions in the image based on local and global contextual relationships. This model's adaptive attention mechanism addresses variations in lung morphology, image artifacts, and low-contrast regions, leading to improved segmentation accuracy. The combined convolutional and attention-based architecture enhances robustness and precision. Experimental results on benchmark CT datasets demonstrate that the proposed model achieves an IoU of 0.984, a Dice coefficient of 0.989, a MIoU of 0.972, and an HD95 of 1.22 mm, surpassing state-of-the-art methods. These results establish U-NetAA as a superior tool for clinical lung segmentation, with enhanced accuracy, sensitivity, and generalization capability.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251351623"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved U-NET3+ with transformer and adaptive attention map for lung segmentation.\",\"authors\":\"V Joseph Raj, P Christopher\",\"doi\":\"10.1177/08953996251351623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of lung regions from CT scan images is critical for diagnosing and monitoring respiratory diseases. This study introduces a novel hybrid architecture Adaptive Attention U-NetAA, which combines the strengths of U-Net3 + and Transformer based attention mechanisms models for high-precision lung segmentation. The U-Net3 + module effectively segments the lung region by leveraging its deep convolutional network with nested skip connections, ensuring rich multi-scale feature extraction. A key innovation is introducing an adaptive attention mechanism within the Transformer module, which dynamically adjusts the focus on critical regions in the image based on local and global contextual relationships. This model's adaptive attention mechanism addresses variations in lung morphology, image artifacts, and low-contrast regions, leading to improved segmentation accuracy. The combined convolutional and attention-based architecture enhances robustness and precision. Experimental results on benchmark CT datasets demonstrate that the proposed model achieves an IoU of 0.984, a Dice coefficient of 0.989, a MIoU of 0.972, and an HD95 of 1.22 mm, surpassing state-of-the-art methods. These results establish U-NetAA as a superior tool for clinical lung segmentation, with enhanced accuracy, sensitivity, and generalization capability.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251351623\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251351623\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251351623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

从CT扫描图像中准确分割肺区域对于诊断和监测呼吸系统疾病至关重要。本研究提出了一种新的混合结构自适应注意力U-NetAA,它结合了U-Net3 +和基于Transformer的注意机制模型的优势,用于高精度肺分割。U-Net3 +模块利用其具有嵌套跳跃连接的深度卷积网络,有效地分割肺区域,确保丰富的多尺度特征提取。一个关键的创新是在Transformer模块中引入自适应注意力机制,该机制基于局部和全局上下文关系动态调整图像中关键区域的焦点。该模型的自适应注意机制解决了肺形态、图像伪影和低对比度区域的变化,从而提高了分割精度。结合卷积和基于注意力的结构增强了鲁棒性和精度。在基准CT数据集上的实验结果表明,该模型的IoU为0.984,Dice系数为0.989,MIoU为0.972,HD95为1.22 mm,优于现有方法。这些结果确立了U-NetAA作为临床肺分割的优越工具,具有更高的准确性、敏感性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved U-NET3+ with transformer and adaptive attention map for lung segmentation.

Accurate segmentation of lung regions from CT scan images is critical for diagnosing and monitoring respiratory diseases. This study introduces a novel hybrid architecture Adaptive Attention U-NetAA, which combines the strengths of U-Net3 + and Transformer based attention mechanisms models for high-precision lung segmentation. The U-Net3 + module effectively segments the lung region by leveraging its deep convolutional network with nested skip connections, ensuring rich multi-scale feature extraction. A key innovation is introducing an adaptive attention mechanism within the Transformer module, which dynamically adjusts the focus on critical regions in the image based on local and global contextual relationships. This model's adaptive attention mechanism addresses variations in lung morphology, image artifacts, and low-contrast regions, leading to improved segmentation accuracy. The combined convolutional and attention-based architecture enhances robustness and precision. Experimental results on benchmark CT datasets demonstrate that the proposed model achieves an IoU of 0.984, a Dice coefficient of 0.989, a MIoU of 0.972, and an HD95 of 1.22 mm, surpassing state-of-the-art methods. These results establish U-NetAA as a superior tool for clinical lung segmentation, with enhanced accuracy, sensitivity, and generalization capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信