基于代谢组学分析的胆囊对菊花代谢的影响。

IF 2.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Phytochemical Analysis Pub Date : 2025-10-01 Epub Date: 2025-07-14 DOI:10.1002/pca.70011
Hongting Yang, Wenmiao Li, Haoxi Xin, Qian He, Siyu Wu, Fadi Chen, Xi Chen
{"title":"基于代谢组学分析的胆囊对菊花代谢的影响。","authors":"Hongting Yang, Wenmiao Li, Haoxi Xin, Qian He, Siyu Wu, Fadi Chen, Xi Chen","doi":"10.1002/pca.70011","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Galls, which are abnormal or protruding tissues, form when insects bite plant cells and serve as evidence for understanding plant-insect interactions.</p><p><strong>Objectives: </strong>This study is aimed at understanding the interactions between Chrysanthemum species and insects at the metabolomic level and to reveal the metabolic changes induced by insect galls.</p><p><strong>Methodology: </strong>This study employed liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), along with multivariate statistics and pathway enrichment, for metabolomic profiling of Chrysanthemum glabriusculum, including gall-infected and gall-free leaves, and reported the gall phenomenon in Chrysanthemum species for the first time.</p><p><strong>Results: </strong>LC-MS metabolomics analysis identified 105 marker metabolites, with 61 upregulated and 42 downregulated. Organic acids were the most abundant (20.00%), followed by carbohydrates (16.19%) and flavonoids (14.29%). KEGG analysis revealed significant pathway enrichment in flavone and flavonol biosynthesis, the TCA cycle, and galactose metabolism (p < 0.05). GC-MS metabolomics analysis revealed 27 volatile secondary metabolites, predominantly terpenoids (16 types), followed mainly by alcohol (4 types) and ketone compounds (three types). VIP > 1 analysis revealed 13 differentially signature metabolites; gall tissue (CgCa) presented elevated levels of β-phellandrene, camphene, and 1,8-Cineole, whereas γ-Muurolene, α-Farnesene, and Copaene were downregulated in CgCa.</p><p><strong>Conclusions: </strong>During gall induction, C. glabriusculum plays an important role in energy metabolism through the regulation of key metabolic pathways, such as galactose metabolism and the TCA cycle, and their products; moreover, by regulating the biosynthesis of flavonoids and flavonols and the corresponding accumulation of secondary metabolites (terpenoids, ketones, and alcohols), it defends against insect-induced galls.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"2050-2064"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Galls on the Metabolism of Chrysanthemum Species Based on Metabolomic Profiling.\",\"authors\":\"Hongting Yang, Wenmiao Li, Haoxi Xin, Qian He, Siyu Wu, Fadi Chen, Xi Chen\",\"doi\":\"10.1002/pca.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Galls, which are abnormal or protruding tissues, form when insects bite plant cells and serve as evidence for understanding plant-insect interactions.</p><p><strong>Objectives: </strong>This study is aimed at understanding the interactions between Chrysanthemum species and insects at the metabolomic level and to reveal the metabolic changes induced by insect galls.</p><p><strong>Methodology: </strong>This study employed liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), along with multivariate statistics and pathway enrichment, for metabolomic profiling of Chrysanthemum glabriusculum, including gall-infected and gall-free leaves, and reported the gall phenomenon in Chrysanthemum species for the first time.</p><p><strong>Results: </strong>LC-MS metabolomics analysis identified 105 marker metabolites, with 61 upregulated and 42 downregulated. Organic acids were the most abundant (20.00%), followed by carbohydrates (16.19%) and flavonoids (14.29%). KEGG analysis revealed significant pathway enrichment in flavone and flavonol biosynthesis, the TCA cycle, and galactose metabolism (p < 0.05). GC-MS metabolomics analysis revealed 27 volatile secondary metabolites, predominantly terpenoids (16 types), followed mainly by alcohol (4 types) and ketone compounds (three types). VIP > 1 analysis revealed 13 differentially signature metabolites; gall tissue (CgCa) presented elevated levels of β-phellandrene, camphene, and 1,8-Cineole, whereas γ-Muurolene, α-Farnesene, and Copaene were downregulated in CgCa.</p><p><strong>Conclusions: </strong>During gall induction, C. glabriusculum plays an important role in energy metabolism through the regulation of key metabolic pathways, such as galactose metabolism and the TCA cycle, and their products; moreover, by regulating the biosynthesis of flavonoids and flavonols and the corresponding accumulation of secondary metabolites (terpenoids, ketones, and alcohols), it defends against insect-induced galls.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"2050-2064\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.70011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.70011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

虫瘿是昆虫叮咬植物细胞时形成的异常或突出的组织,是了解植物与昆虫相互作用的证据。目的:在代谢组学水平上了解菊花与昆虫的相互作用,揭示昆虫叮咬引起的代谢变化。方法:采用液相色谱-质谱联用(LC-MS)和气相色谱-质谱联用(GC-MS),结合多元统计和途径富集等方法,对光菊(glabriusculum)包括瘿病叶片和无瘿病叶片的代谢组学特征进行了分析,首次报道了菊花物种中的瘿病现象。结果:LC-MS代谢组学分析鉴定出105个标记代谢物,其中61个上调,42个下调。有机酸含量最高(20.00%),其次是碳水化合物(16.19%)和类黄酮(14.29%)。KEGG分析显示黄酮和黄酮醇生物合成、TCA循环和半乳糖代谢通路显著富集(p 1分析显示13种差异特征代谢物;β-茶树烯、莰烯和1,8-桉树脑在CgCa中表达升高,而γ-木烯、α-法尼烯和Copaene则表达下调。结论:在胆囊诱导过程中,光棘草通过调节半乳糖代谢和TCA循环等关键代谢途径及其产物,在能量代谢中发挥重要作用;此外,通过调节类黄酮和类黄酮醇的生物合成以及相应的次生代谢物(萜类、酮类和醇类)的积累,它可以抵御昆虫诱导的虫瘿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Galls on the Metabolism of Chrysanthemum Species Based on Metabolomic Profiling.

Introduction: Galls, which are abnormal or protruding tissues, form when insects bite plant cells and serve as evidence for understanding plant-insect interactions.

Objectives: This study is aimed at understanding the interactions between Chrysanthemum species and insects at the metabolomic level and to reveal the metabolic changes induced by insect galls.

Methodology: This study employed liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), along with multivariate statistics and pathway enrichment, for metabolomic profiling of Chrysanthemum glabriusculum, including gall-infected and gall-free leaves, and reported the gall phenomenon in Chrysanthemum species for the first time.

Results: LC-MS metabolomics analysis identified 105 marker metabolites, with 61 upregulated and 42 downregulated. Organic acids were the most abundant (20.00%), followed by carbohydrates (16.19%) and flavonoids (14.29%). KEGG analysis revealed significant pathway enrichment in flavone and flavonol biosynthesis, the TCA cycle, and galactose metabolism (p < 0.05). GC-MS metabolomics analysis revealed 27 volatile secondary metabolites, predominantly terpenoids (16 types), followed mainly by alcohol (4 types) and ketone compounds (three types). VIP > 1 analysis revealed 13 differentially signature metabolites; gall tissue (CgCa) presented elevated levels of β-phellandrene, camphene, and 1,8-Cineole, whereas γ-Muurolene, α-Farnesene, and Copaene were downregulated in CgCa.

Conclusions: During gall induction, C. glabriusculum plays an important role in energy metabolism through the regulation of key metabolic pathways, such as galactose metabolism and the TCA cycle, and their products; moreover, by regulating the biosynthesis of flavonoids and flavonols and the corresponding accumulation of secondary metabolites (terpenoids, ketones, and alcohols), it defends against insect-induced galls.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信