增强心血管疾病预测:基于amwoa的特征选择和pyramidconformer - vae融合方法。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
P Nancy, M Rajkumar, S Ashwini, J Jegan Amarnath
{"title":"增强心血管疾病预测:基于amwoa的特征选择和pyramidconformer - vae融合方法。","authors":"P Nancy, M Rajkumar, S Ashwini, J Jegan Amarnath","doi":"10.1080/10255842.2025.2526789","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease remains a major global cause of death. To address challenges of high dimensionality and data imbalance in heart disease prediction, this study proposes a novel framework integrating feature optimization and classification. An Adaptive Mutated Walrus Optimization Algorithm (AMWOA) effectively reduces feature dimensions, mitigating overfitting and reducing execution time. For classification, a PyramidConvFormer-Variational Autoencoder (VAE) model integrates CNN and transformer layers to extract local-global patterns. Final classification is performed via fully connected layers with softmax activation. Evaluated on the Cleveland dataset using five-fold cross-validation, the proposed method achieves 98.12% accuracy and 98.91% precision, outperforming existing prediction frameworks.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-19"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cardiovascular disease prediction: AMWOA-based feature selection and PyramidConvFormer-VAE fusion approach.\",\"authors\":\"P Nancy, M Rajkumar, S Ashwini, J Jegan Amarnath\",\"doi\":\"10.1080/10255842.2025.2526789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease remains a major global cause of death. To address challenges of high dimensionality and data imbalance in heart disease prediction, this study proposes a novel framework integrating feature optimization and classification. An Adaptive Mutated Walrus Optimization Algorithm (AMWOA) effectively reduces feature dimensions, mitigating overfitting and reducing execution time. For classification, a PyramidConvFormer-Variational Autoencoder (VAE) model integrates CNN and transformer layers to extract local-global patterns. Final classification is performed via fully connected layers with softmax activation. Evaluated on the Cleveland dataset using five-fold cross-validation, the proposed method achieves 98.12% accuracy and 98.91% precision, outperforming existing prediction frameworks.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2526789\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2526789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病仍然是全球主要的死亡原因。针对心脏病预测中存在的高维数和数据不平衡问题,本研究提出了一种融合特征优化和分类的新框架。一种自适应变异海象优化算法(AMWOA)有效地降低了特征维数,减少了过拟合,缩短了执行时间。在分类方面,一个pyramidconformer - variational Autoencoder (VAE)模型集成了CNN和transformer层来提取局部-全局模式。最后的分类是通过softmax激活的完全连接层来执行的。在Cleveland数据集上进行五重交叉验证,准确率达到98.12%,精密度达到98.91%,优于现有的预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced cardiovascular disease prediction: AMWOA-based feature selection and PyramidConvFormer-VAE fusion approach.

Cardiovascular disease remains a major global cause of death. To address challenges of high dimensionality and data imbalance in heart disease prediction, this study proposes a novel framework integrating feature optimization and classification. An Adaptive Mutated Walrus Optimization Algorithm (AMWOA) effectively reduces feature dimensions, mitigating overfitting and reducing execution time. For classification, a PyramidConvFormer-Variational Autoencoder (VAE) model integrates CNN and transformer layers to extract local-global patterns. Final classification is performed via fully connected layers with softmax activation. Evaluated on the Cleveland dataset using five-fold cross-validation, the proposed method achieves 98.12% accuracy and 98.91% precision, outperforming existing prediction frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信