从快照到稳定的结果:基于rs- fmri的精神病风险或新近发作的抑郁症患者的功能预后

IF 9.6 1区 医学 Q1 NEUROSCIENCES
Madalina-Octavia Buciuman, Shalaila S Haas, Linda A Antonucci, Elif Sarisik, Adyasha Khuntia, Theresa Lichtenstein, Marlene Rosen, Joseph Kambeitz, Christos Pantelis, Rebekka Lencer, Alessandro Bertolino, Paolo Brambilla, Rachel Upthegrove, Stephen J Wood, Peter Falkai, Anita Riecher-Rössler, Stephan Ruhrmann, Frauke Schultze-Lutter, Eva Meisenzahl, Jarmo Hietala, Raimo K R Salokangas, Stefan Borgwardt, Dominic B Dwyer, Lana Kambeitz-Ilankovic, Nikolaos Koutsouleris
{"title":"从快照到稳定的结果:基于rs- fmri的精神病风险或新近发作的抑郁症患者的功能预后","authors":"Madalina-Octavia Buciuman, Shalaila S Haas, Linda A Antonucci, Elif Sarisik, Adyasha Khuntia, Theresa Lichtenstein, Marlene Rosen, Joseph Kambeitz, Christos Pantelis, Rebekka Lencer, Alessandro Bertolino, Paolo Brambilla, Rachel Upthegrove, Stephen J Wood, Peter Falkai, Anita Riecher-Rössler, Stephan Ruhrmann, Frauke Schultze-Lutter, Eva Meisenzahl, Jarmo Hietala, Raimo K R Salokangas, Stefan Borgwardt, Dominic B Dwyer, Lana Kambeitz-Ilankovic, Nikolaos Koutsouleris","doi":"10.1016/j.biopsych.2025.07.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early recovery of functioning is critical for favorable outcomes in psychotic and affective disorders. Transdiagnostic brain activity patterns may capture pathways for poor outcomes before clinical manifestation, supporting timely prevention and intervention.</p><p><strong>Methods: </strong>Using machine learning, we evaluated the transdiagnostic prognostic value of resting-state fMRI fractional amplitude of low-frequency fluctuations (fALFF, slow-5 and slow-4 sub-bands) for functional outcomes in patients at clinical high-risk for psychosis (n=217) or with recent-onset depression (n=198) from the multi-site PRONIA study. Leave-site-out cross-validation assessed geographic generalizability of models across disability and symptoms domains, with outcomes defined as 'snapshots' at 9- or 18-month follow-up or across both timepoints. We examined diagnosis-specific performance, generalization to recent-onset psychosis (ROP, n=140), and negative symptoms, and the added value of fALFF over clinical prognostication.</p><p><strong>Results: </strong>Transdiagnostic models predicting stable good functioning across follow-ups showed up to 10% higher balanced accuracy (BAC) than 'snapshot' models. Decreased slow-5 fALFF in the default-mode, executive control (EC), and dorsal attentional (DA) networks, and increased fALFF in salience, EC, and DA networks predicted impairment with BAC=67% (Sensitivity=65%, Specificity=70%, P<.001). This model generalized to ROP (BAC=62%, Sensitivity=64%, Specificity=59%, P<.001) and predicted (BAC=65%, Sensitivity=66%, Specificity=65%, P<.001) and was mediated by negative symptoms. Slow-5-based models improved prognostic accuracy over expert ratings in disability (BAC<sub>raters</sub>=66%, BAC<sub>raters+slow-5</sub>=75%, W=1680, P<.001) and symptoms domains (BAC<sub>raters</sub>=61%, BAC<sub>raters+slow-5</sub>=71%, W=1444, P<.001).</p><p><strong>Conclusions: </strong>We highlighted the prognostic value of fALFF for functional impairment in psychosis-risk and early depression. Leveraging trajectorial information, we identified candidate imaging biomarkers to improve prognostication, supporting personalized prevention and recovery strategies.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Snapshots to Stable Outcomes: rs-fMRI-based Prognosis of Functioning in Patients with Psychosis Risk or Recent-Onset Depression.\",\"authors\":\"Madalina-Octavia Buciuman, Shalaila S Haas, Linda A Antonucci, Elif Sarisik, Adyasha Khuntia, Theresa Lichtenstein, Marlene Rosen, Joseph Kambeitz, Christos Pantelis, Rebekka Lencer, Alessandro Bertolino, Paolo Brambilla, Rachel Upthegrove, Stephen J Wood, Peter Falkai, Anita Riecher-Rössler, Stephan Ruhrmann, Frauke Schultze-Lutter, Eva Meisenzahl, Jarmo Hietala, Raimo K R Salokangas, Stefan Borgwardt, Dominic B Dwyer, Lana Kambeitz-Ilankovic, Nikolaos Koutsouleris\",\"doi\":\"10.1016/j.biopsych.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Early recovery of functioning is critical for favorable outcomes in psychotic and affective disorders. Transdiagnostic brain activity patterns may capture pathways for poor outcomes before clinical manifestation, supporting timely prevention and intervention.</p><p><strong>Methods: </strong>Using machine learning, we evaluated the transdiagnostic prognostic value of resting-state fMRI fractional amplitude of low-frequency fluctuations (fALFF, slow-5 and slow-4 sub-bands) for functional outcomes in patients at clinical high-risk for psychosis (n=217) or with recent-onset depression (n=198) from the multi-site PRONIA study. Leave-site-out cross-validation assessed geographic generalizability of models across disability and symptoms domains, with outcomes defined as 'snapshots' at 9- or 18-month follow-up or across both timepoints. We examined diagnosis-specific performance, generalization to recent-onset psychosis (ROP, n=140), and negative symptoms, and the added value of fALFF over clinical prognostication.</p><p><strong>Results: </strong>Transdiagnostic models predicting stable good functioning across follow-ups showed up to 10% higher balanced accuracy (BAC) than 'snapshot' models. Decreased slow-5 fALFF in the default-mode, executive control (EC), and dorsal attentional (DA) networks, and increased fALFF in salience, EC, and DA networks predicted impairment with BAC=67% (Sensitivity=65%, Specificity=70%, P<.001). This model generalized to ROP (BAC=62%, Sensitivity=64%, Specificity=59%, P<.001) and predicted (BAC=65%, Sensitivity=66%, Specificity=65%, P<.001) and was mediated by negative symptoms. Slow-5-based models improved prognostic accuracy over expert ratings in disability (BAC<sub>raters</sub>=66%, BAC<sub>raters+slow-5</sub>=75%, W=1680, P<.001) and symptoms domains (BAC<sub>raters</sub>=61%, BAC<sub>raters+slow-5</sub>=71%, W=1444, P<.001).</p><p><strong>Conclusions: </strong>We highlighted the prognostic value of fALFF for functional impairment in psychosis-risk and early depression. Leveraging trajectorial information, we identified candidate imaging biomarkers to improve prognostication, supporting personalized prevention and recovery strategies.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2025.07.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2025.07.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:功能的早期恢复对于精神病和情感性障碍的良好预后至关重要。跨诊断脑活动模式可以在临床表现之前捕获不良结果的途径,支持及时预防和干预。方法:使用机器学习,我们评估静息状态fMRI低频波动分数幅值(fALFF,慢-5和慢-4亚带)对来自多位点PRONIA研究的临床精神病高危患者(n=217)或新近发病的抑郁症患者(n=198)的功能结局的诊断价值。留点交叉验证评估了模型在残疾和症状领域的地理普遍性,结果定义为9个月或18个月随访或跨越两个时间点的“快照”。我们检查了诊断特异性表现、对新发精神病(ROP, n=140)的泛化和阴性症状,以及fALFF对临床预后的附加价值。结果:预测随访期间稳定良好功能的跨诊断模型比“快照”模型高出10%的平衡准确性(BAC)。默认模式、执行控制(EC)和背侧注意(DA)网络中慢速-5 fALFF降低,显著性、EC和DA网络中fALFF增加,预测BAC损害=67%(敏感性=65%,特异性=70%,prater =66%, BACraters+慢速-5=75%,W=1680, prater =61%, BACraters+慢速-5=71%,W=1444, p)结论:我们强调了fALFF对精神病风险和早期抑郁症的功能损害的预后价值。利用轨迹信息,我们确定了候选成像生物标志物,以改善预后,支持个性化的预防和恢复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Snapshots to Stable Outcomes: rs-fMRI-based Prognosis of Functioning in Patients with Psychosis Risk or Recent-Onset Depression.

Background: Early recovery of functioning is critical for favorable outcomes in psychotic and affective disorders. Transdiagnostic brain activity patterns may capture pathways for poor outcomes before clinical manifestation, supporting timely prevention and intervention.

Methods: Using machine learning, we evaluated the transdiagnostic prognostic value of resting-state fMRI fractional amplitude of low-frequency fluctuations (fALFF, slow-5 and slow-4 sub-bands) for functional outcomes in patients at clinical high-risk for psychosis (n=217) or with recent-onset depression (n=198) from the multi-site PRONIA study. Leave-site-out cross-validation assessed geographic generalizability of models across disability and symptoms domains, with outcomes defined as 'snapshots' at 9- or 18-month follow-up or across both timepoints. We examined diagnosis-specific performance, generalization to recent-onset psychosis (ROP, n=140), and negative symptoms, and the added value of fALFF over clinical prognostication.

Results: Transdiagnostic models predicting stable good functioning across follow-ups showed up to 10% higher balanced accuracy (BAC) than 'snapshot' models. Decreased slow-5 fALFF in the default-mode, executive control (EC), and dorsal attentional (DA) networks, and increased fALFF in salience, EC, and DA networks predicted impairment with BAC=67% (Sensitivity=65%, Specificity=70%, P<.001). This model generalized to ROP (BAC=62%, Sensitivity=64%, Specificity=59%, P<.001) and predicted (BAC=65%, Sensitivity=66%, Specificity=65%, P<.001) and was mediated by negative symptoms. Slow-5-based models improved prognostic accuracy over expert ratings in disability (BACraters=66%, BACraters+slow-5=75%, W=1680, P<.001) and symptoms domains (BACraters=61%, BACraters+slow-5=71%, W=1444, P<.001).

Conclusions: We highlighted the prognostic value of fALFF for functional impairment in psychosis-risk and early depression. Leveraging trajectorial information, we identified candidate imaging biomarkers to improve prognostication, supporting personalized prevention and recovery strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Psychiatry
Biological Psychiatry 医学-精神病学
CiteScore
18.80
自引率
2.80%
发文量
1398
审稿时长
33 days
期刊介绍: Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信