Xi Chen, Kang Zhang, Zhen Sun, Yan Fang, Jie Chen, Congcong Jin, Lani Shi, Yan Wang
{"title":"CHO-K1细胞中基于转座子的瞬时转染系统能够对稳定的细胞系蛋白进行质量预测。","authors":"Xi Chen, Kang Zhang, Zhen Sun, Yan Fang, Jie Chen, Congcong Jin, Lani Shi, Yan Wang","doi":"10.1007/s00449-025-03198-2","DOIUrl":null,"url":null,"abstract":"<p><p>In biologics drug discovery, transient protein expression is widely used to rapidly produce biologics, thereby accelerating the identification of lead candidates. However, the accuracy and consistency of predicting further product quality in large-scale production needs to be considered, especially with respect to physicochemical properties and posttranslational modifications. With this in mind, a transient expression system utilizing Chinese hamster ovary K1 (CHO-K1) has been established, which integrates high expression capability with quality profiles similar to those of the protein produced by stable cell lines. A well-designed vector containing transposon elements overcomes the blindness of random integration and ensures the sustained viability of cells and production capability, thus addressing the critical bottlenecks in classical transiently transfected workflows. Combined with the optimization of various transfection parameters, the customized platform achieved a titer over 1.5 g/L in the production of a bispecific antibody while maintaining a proportion of fragments, aggregates and glycosylation patterns that are comparable to those of the stable cell line protein. More importantly, this platform also demonstrated reliability in terms of quality across diverse antibody formats. This innovative protein expression platform bridges the gap between transient and stable expression on the basis of CHO-K1, ensuring the consistency of host cell types throughout the antibody discovery and development process.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transposon-based transient transfection system in CHO-K1 cells enables quality prediction of stable cell line proteins.\",\"authors\":\"Xi Chen, Kang Zhang, Zhen Sun, Yan Fang, Jie Chen, Congcong Jin, Lani Shi, Yan Wang\",\"doi\":\"10.1007/s00449-025-03198-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In biologics drug discovery, transient protein expression is widely used to rapidly produce biologics, thereby accelerating the identification of lead candidates. However, the accuracy and consistency of predicting further product quality in large-scale production needs to be considered, especially with respect to physicochemical properties and posttranslational modifications. With this in mind, a transient expression system utilizing Chinese hamster ovary K1 (CHO-K1) has been established, which integrates high expression capability with quality profiles similar to those of the protein produced by stable cell lines. A well-designed vector containing transposon elements overcomes the blindness of random integration and ensures the sustained viability of cells and production capability, thus addressing the critical bottlenecks in classical transiently transfected workflows. Combined with the optimization of various transfection parameters, the customized platform achieved a titer over 1.5 g/L in the production of a bispecific antibody while maintaining a proportion of fragments, aggregates and glycosylation patterns that are comparable to those of the stable cell line protein. More importantly, this platform also demonstrated reliability in terms of quality across diverse antibody formats. This innovative protein expression platform bridges the gap between transient and stable expression on the basis of CHO-K1, ensuring the consistency of host cell types throughout the antibody discovery and development process.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03198-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03198-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A transposon-based transient transfection system in CHO-K1 cells enables quality prediction of stable cell line proteins.
In biologics drug discovery, transient protein expression is widely used to rapidly produce biologics, thereby accelerating the identification of lead candidates. However, the accuracy and consistency of predicting further product quality in large-scale production needs to be considered, especially with respect to physicochemical properties and posttranslational modifications. With this in mind, a transient expression system utilizing Chinese hamster ovary K1 (CHO-K1) has been established, which integrates high expression capability with quality profiles similar to those of the protein produced by stable cell lines. A well-designed vector containing transposon elements overcomes the blindness of random integration and ensures the sustained viability of cells and production capability, thus addressing the critical bottlenecks in classical transiently transfected workflows. Combined with the optimization of various transfection parameters, the customized platform achieved a titer over 1.5 g/L in the production of a bispecific antibody while maintaining a proportion of fragments, aggregates and glycosylation patterns that are comparable to those of the stable cell line protein. More importantly, this platform also demonstrated reliability in terms of quality across diverse antibody formats. This innovative protein expression platform bridges the gap between transient and stable expression on the basis of CHO-K1, ensuring the consistency of host cell types throughout the antibody discovery and development process.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.