Dr Ankur Singhal, Dr Anil Garg, Dr Ajay Jangra, Dr Poonam Rani, Dr Priyanka Jangra, Dr Deepti Chaudhary
{"title":"蝗虫螺旋导航算法实现自由空间光学高速数据通信网络","authors":"Dr Ankur Singhal, Dr Anil Garg, Dr Ajay Jangra, Dr Poonam Rani, Dr Priyanka Jangra, Dr Deepti Chaudhary","doi":"10.1016/j.osn.2025.100815","DOIUrl":null,"url":null,"abstract":"Over the past two decades, the proliferation of data communication devices has significantly expanded to raise the standard of living for the majority of people. However, the integration of multiple devices into a limited space requires significant bandwidth capacity when building densely connected networks. In addition, conventional systems increase synchronization errors and high operational expenditures. Therefore, to mitigate the limitations this research offers a Locusts Spiral Navigation Algorithm enabled Orthogonal Frequency-Division Multiplexing for high-speed data communication network in free space optics (LSN-OFDM-FSO). The proposed model utilizing the LSN algorithm effectively selects the best phasor weight factors with minimal Peak Average Power Ratio (PAPR) value. Moreover, the combination of Wavelength Division Multiplexing and Mach–Zehnder Modulator systems ensure high-speed connectivity with maximum transmission capacity. When compared with other existing modulation methods, the LSN-OFDM-FSO offers less Bit Error Rate <ce:math altimg=\"si1.svg\"></ce:math> for a Free space optics length of 6 km. Additionally, the proposed model has less penalty total power of -966.674 dB, and total power of -33.2618 dBm. On the other hand, in terms of energy analysis, for 64 OLTs, the proposed model consumes a total energy of 9.29, and the ONU consumes less energy of 77.04. Moreover, the proposed system is well-suitable for high-speed data communication networks, with minimum information loss and delay.","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locusts Spiral Navigation Algorithm Enabled High-Speed Data Communication Network for Free Space Optics\",\"authors\":\"Dr Ankur Singhal, Dr Anil Garg, Dr Ajay Jangra, Dr Poonam Rani, Dr Priyanka Jangra, Dr Deepti Chaudhary\",\"doi\":\"10.1016/j.osn.2025.100815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past two decades, the proliferation of data communication devices has significantly expanded to raise the standard of living for the majority of people. However, the integration of multiple devices into a limited space requires significant bandwidth capacity when building densely connected networks. In addition, conventional systems increase synchronization errors and high operational expenditures. Therefore, to mitigate the limitations this research offers a Locusts Spiral Navigation Algorithm enabled Orthogonal Frequency-Division Multiplexing for high-speed data communication network in free space optics (LSN-OFDM-FSO). The proposed model utilizing the LSN algorithm effectively selects the best phasor weight factors with minimal Peak Average Power Ratio (PAPR) value. Moreover, the combination of Wavelength Division Multiplexing and Mach–Zehnder Modulator systems ensure high-speed connectivity with maximum transmission capacity. When compared with other existing modulation methods, the LSN-OFDM-FSO offers less Bit Error Rate <ce:math altimg=\\\"si1.svg\\\"></ce:math> for a Free space optics length of 6 km. Additionally, the proposed model has less penalty total power of -966.674 dB, and total power of -33.2618 dBm. On the other hand, in terms of energy analysis, for 64 OLTs, the proposed model consumes a total energy of 9.29, and the ONU consumes less energy of 77.04. Moreover, the proposed system is well-suitable for high-speed data communication networks, with minimum information loss and delay.\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.osn.2025.100815\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.osn.2025.100815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Locusts Spiral Navigation Algorithm Enabled High-Speed Data Communication Network for Free Space Optics
Over the past two decades, the proliferation of data communication devices has significantly expanded to raise the standard of living for the majority of people. However, the integration of multiple devices into a limited space requires significant bandwidth capacity when building densely connected networks. In addition, conventional systems increase synchronization errors and high operational expenditures. Therefore, to mitigate the limitations this research offers a Locusts Spiral Navigation Algorithm enabled Orthogonal Frequency-Division Multiplexing for high-speed data communication network in free space optics (LSN-OFDM-FSO). The proposed model utilizing the LSN algorithm effectively selects the best phasor weight factors with minimal Peak Average Power Ratio (PAPR) value. Moreover, the combination of Wavelength Division Multiplexing and Mach–Zehnder Modulator systems ensure high-speed connectivity with maximum transmission capacity. When compared with other existing modulation methods, the LSN-OFDM-FSO offers less Bit Error Rate for a Free space optics length of 6 km. Additionally, the proposed model has less penalty total power of -966.674 dB, and total power of -33.2618 dBm. On the other hand, in terms of energy analysis, for 64 OLTs, the proposed model consumes a total energy of 9.29, and the ONU consumes less energy of 77.04. Moreover, the proposed system is well-suitable for high-speed data communication networks, with minimum information loss and delay.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks