Jing Bai , Baochun Guo , Ming Tian , Fei Chen , Liqun Zhang
{"title":"动态交联弹性体和橡胶","authors":"Jing Bai , Baochun Guo , Ming Tian , Fei Chen , Liqun Zhang","doi":"10.1016/j.pmatsci.2025.101536","DOIUrl":null,"url":null,"abstract":"<div><div>Classical rubbers and elastomers are normally prepared via a crosslinking process such as vulcanization, which can produce permanent covalently crosslinked structures and endows mechanical robustness, chemical resistance and thermal stability. However, the permanent covalently crosslinked networks make rubbers and elastomers cannot be reprocessed, reshaped or recycled,<!--> <!-->causing serious pollution and negative impacts on the environment. The design of dynamic covalent crosslinked structures in polymers brings new properties to classical rubber and elastomer materials, in particular in terms of thermal responses, reprocessability and recycling abilities.<!--> <!-->In recent years, there has been a<!--> <!-->growing interest in the design and synthesis of dynamic crosslinked polymers. In this review, the designs, characterizations, and utilizations of dynamic crosslinked elastomers and rubbers are summarized, focusing on the design and synthesis of dynamic crosslinked elastomers and rubbers with sustainability and recyclability, followed by an overview of the applications of dynamic crosslinked elastomers and rubbers. Furthermore, through the tuning and controlling on the dynamic crosslinked structure variedly, some functional behaviors can be realized. To declare and promote the consequence and potential utilization of the dynamic crosslinked elastomers and rubbers, perspectives and suggestions are presented for future research on the design, synthesis, and process strategies of dynamic crosslinked elastomers and rubbers.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101536"},"PeriodicalIF":33.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic crosslinked elastomers and rubbers\",\"authors\":\"Jing Bai , Baochun Guo , Ming Tian , Fei Chen , Liqun Zhang\",\"doi\":\"10.1016/j.pmatsci.2025.101536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Classical rubbers and elastomers are normally prepared via a crosslinking process such as vulcanization, which can produce permanent covalently crosslinked structures and endows mechanical robustness, chemical resistance and thermal stability. However, the permanent covalently crosslinked networks make rubbers and elastomers cannot be reprocessed, reshaped or recycled,<!--> <!-->causing serious pollution and negative impacts on the environment. The design of dynamic covalent crosslinked structures in polymers brings new properties to classical rubber and elastomer materials, in particular in terms of thermal responses, reprocessability and recycling abilities.<!--> <!-->In recent years, there has been a<!--> <!-->growing interest in the design and synthesis of dynamic crosslinked polymers. In this review, the designs, characterizations, and utilizations of dynamic crosslinked elastomers and rubbers are summarized, focusing on the design and synthesis of dynamic crosslinked elastomers and rubbers with sustainability and recyclability, followed by an overview of the applications of dynamic crosslinked elastomers and rubbers. Furthermore, through the tuning and controlling on the dynamic crosslinked structure variedly, some functional behaviors can be realized. To declare and promote the consequence and potential utilization of the dynamic crosslinked elastomers and rubbers, perspectives and suggestions are presented for future research on the design, synthesis, and process strategies of dynamic crosslinked elastomers and rubbers.</div></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"155 \",\"pages\":\"Article 101536\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642525001148\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Classical rubbers and elastomers are normally prepared via a crosslinking process such as vulcanization, which can produce permanent covalently crosslinked structures and endows mechanical robustness, chemical resistance and thermal stability. However, the permanent covalently crosslinked networks make rubbers and elastomers cannot be reprocessed, reshaped or recycled, causing serious pollution and negative impacts on the environment. The design of dynamic covalent crosslinked structures in polymers brings new properties to classical rubber and elastomer materials, in particular in terms of thermal responses, reprocessability and recycling abilities. In recent years, there has been a growing interest in the design and synthesis of dynamic crosslinked polymers. In this review, the designs, characterizations, and utilizations of dynamic crosslinked elastomers and rubbers are summarized, focusing on the design and synthesis of dynamic crosslinked elastomers and rubbers with sustainability and recyclability, followed by an overview of the applications of dynamic crosslinked elastomers and rubbers. Furthermore, through the tuning and controlling on the dynamic crosslinked structure variedly, some functional behaviors can be realized. To declare and promote the consequence and potential utilization of the dynamic crosslinked elastomers and rubbers, perspectives and suggestions are presented for future research on the design, synthesis, and process strategies of dynamic crosslinked elastomers and rubbers.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.