Guangming Wang;Yu Zheng;Yuxuan Wu;Yanfeng Guo;Zhe Liu;Yixiang Zhu;Wolfram Burgard;Hesheng Wang
{"title":"面向车辆定位的图像与LiDAR点云端到端2D-3D配准","authors":"Guangming Wang;Yu Zheng;Yuxuan Wu;Yanfeng Guo;Zhe Liu;Yixiang Zhu;Wolfram Burgard;Hesheng Wang","doi":"10.1109/TRO.2025.3588454","DOIUrl":null,"url":null,"abstract":"Robot localization using a built map is essential for a variety of tasks including accurate navigation and mobile manipulation. A popular approach to robot localization is based on image-to-point cloud registration, which combines illumination-invariant LiDAR-based mapping with economical image-based localization. However, the recent works for image-to-point cloud registration either divide the registration into separate modules or project the point cloud to the depth image to register the RGB and depth images. In this article, we present I2PNet, a novel end-to-end 2D-3D registration network, which directly registers the raw 3-D point cloud with the 2-D RGB image using differential modules with a united target. The 2D-3D cost volume module for differential 2D-3D association is proposed to bridge feature extraction and pose regression. The soft point-to-pixel correspondence is implicitly constructed on the intrinsic-independent normalized plane in the 2D-3D cost volume module. Moreover, we introduce an outlier mask prediction module to filter the outliers in the 2D-3D association before pose regression. Furthermore, we propose the coarse-to-fine 2D-3D registration architecture to increase localization accuracy. Extensive localization experiments are conducted on the KITTI, nuScenes, M2DGR, Argoverse, Waymo, and Lyft5 datasets. The results demonstrate that I2PNet outperforms the state-of-the-art by a large margin and has a higher efficiency than the previous works. Moreover, we extend the application of I2PNet to the camera-LiDAR online calibration and demonstrate that I2PNet outperforms recent approaches on the online calibration task.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"4643-4662"},"PeriodicalIF":10.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End 2D-3D Registration Between Image and LiDAR Point Cloud for Vehicle Localization\",\"authors\":\"Guangming Wang;Yu Zheng;Yuxuan Wu;Yanfeng Guo;Zhe Liu;Yixiang Zhu;Wolfram Burgard;Hesheng Wang\",\"doi\":\"10.1109/TRO.2025.3588454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot localization using a built map is essential for a variety of tasks including accurate navigation and mobile manipulation. A popular approach to robot localization is based on image-to-point cloud registration, which combines illumination-invariant LiDAR-based mapping with economical image-based localization. However, the recent works for image-to-point cloud registration either divide the registration into separate modules or project the point cloud to the depth image to register the RGB and depth images. In this article, we present I2PNet, a novel end-to-end 2D-3D registration network, which directly registers the raw 3-D point cloud with the 2-D RGB image using differential modules with a united target. The 2D-3D cost volume module for differential 2D-3D association is proposed to bridge feature extraction and pose regression. The soft point-to-pixel correspondence is implicitly constructed on the intrinsic-independent normalized plane in the 2D-3D cost volume module. Moreover, we introduce an outlier mask prediction module to filter the outliers in the 2D-3D association before pose regression. Furthermore, we propose the coarse-to-fine 2D-3D registration architecture to increase localization accuracy. Extensive localization experiments are conducted on the KITTI, nuScenes, M2DGR, Argoverse, Waymo, and Lyft5 datasets. The results demonstrate that I2PNet outperforms the state-of-the-art by a large margin and has a higher efficiency than the previous works. Moreover, we extend the application of I2PNet to the camera-LiDAR online calibration and demonstrate that I2PNet outperforms recent approaches on the online calibration task.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"4643-4662\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078010/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078010/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
End-to-End 2D-3D Registration Between Image and LiDAR Point Cloud for Vehicle Localization
Robot localization using a built map is essential for a variety of tasks including accurate navigation and mobile manipulation. A popular approach to robot localization is based on image-to-point cloud registration, which combines illumination-invariant LiDAR-based mapping with economical image-based localization. However, the recent works for image-to-point cloud registration either divide the registration into separate modules or project the point cloud to the depth image to register the RGB and depth images. In this article, we present I2PNet, a novel end-to-end 2D-3D registration network, which directly registers the raw 3-D point cloud with the 2-D RGB image using differential modules with a united target. The 2D-3D cost volume module for differential 2D-3D association is proposed to bridge feature extraction and pose regression. The soft point-to-pixel correspondence is implicitly constructed on the intrinsic-independent normalized plane in the 2D-3D cost volume module. Moreover, we introduce an outlier mask prediction module to filter the outliers in the 2D-3D association before pose regression. Furthermore, we propose the coarse-to-fine 2D-3D registration architecture to increase localization accuracy. Extensive localization experiments are conducted on the KITTI, nuScenes, M2DGR, Argoverse, Waymo, and Lyft5 datasets. The results demonstrate that I2PNet outperforms the state-of-the-art by a large margin and has a higher efficiency than the previous works. Moreover, we extend the application of I2PNet to the camera-LiDAR online calibration and demonstrate that I2PNet outperforms recent approaches on the online calibration task.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.