Kaili Liao , Jiarong Wen , Ziqian Liu , Beining Zhang , Xue Zhang , Yuxin Fu , Wenyige Zhang , Huan Hu , Kun Ai , Wenqing Zhu , Meishi Xia , Yixin Lai , Yihui Qian , Yanmei Xu , Fan Sun , Lei Zhang , Qionghui Zhong , Bo Huang , Xiaozhong Wang
{"title":"肿瘤内微生物在结直肠癌发生、增殖、转移中的作用及其潜在的治疗策略。","authors":"Kaili Liao , Jiarong Wen , Ziqian Liu , Beining Zhang , Xue Zhang , Yuxin Fu , Wenyige Zhang , Huan Hu , Kun Ai , Wenqing Zhu , Meishi Xia , Yixin Lai , Yihui Qian , Yanmei Xu , Fan Sun , Lei Zhang , Qionghui Zhong , Bo Huang , Xiaozhong Wang","doi":"10.1016/j.arr.2025.102820","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC), a leading cause of cancer mortality globally, is shaped by dynamic interactions between intratumoral microbiota and the tumor microenvironment (TME). Emerging evidence highlights the critical role of intratumoral bacteria, fungi, and viruses, such as <em>Fusobacterium nucleatum</em> and genotoxic <em>Escherichia coli</em>, in driving carcinogenesis through DNA damage, immune evasion, and metabolic reprogramming. While their origins remain debated, hypotheses include mucosal barrier penetration, migration from adjacent tissues, hematogenous dissemination, and co-metastasis with tumor cells. Spatial profiling reveals non-randomized microbial distribution within immunosuppressive TME niches characterized by reduced T-cell infiltration and enriched immunosuppressive molecules. Mechanistically, microbiota-derived metabolites (e.g., butyrate) and genotoxins (e.g., colibactin) modulate host pathways, promote epithelial DNA damage, polarize immune cells (e.g., M2-like macrophages, Tregs), and collectively, these contribute to fostering tumor progression. Conversely, microbial peptides or STING pathway activation by commensals like <em>Bifidobacterium</em> may enhance antitumor immunity. Intratumoral microbiota significantly influences therapeutic outcomes: <em>F. nucleatum</em> induces chemoresistance via autophagy, while <em>Gammaproteobacteria</em> inactivate gemcitabine. Immunotherapy responses are similarly modulated, with microbiota either amplifying antitumor T-cell activity or suppressing immunity through cytokine-mediated pathways. Innovative strategies, including engineered probiotics, bacterial vectors for drug delivery, and nanotechnology-enabled microbial modulation (e.g., functionalized nanoparticles, biomaterial carriers), aim to exploit these interactions. However, challenges such as low microbial biomass, contamination risks, and interpatient heterogeneity complicate translational efforts. Multi-omics and spatial-profiling technologies offer promise in deciphering microbial-immune-metabolic networks, guiding personalized therapies. Future research must address the biocompatibility of microbial-nanotech hybrids and validate intratumoral microbiota as biomarkers or therapeutic targets. Bridging gut and tumor microbiome studies could unlock novel CRC management strategies, emphasizing the dual role of microbiota as oncogenic drivers and therapeutic allies in precision oncology.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102820"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of intratumoral microbiome in the occurrence, proliferation, metastasis of colorectal cancer and its underlying therapeutic strategies\",\"authors\":\"Kaili Liao , Jiarong Wen , Ziqian Liu , Beining Zhang , Xue Zhang , Yuxin Fu , Wenyige Zhang , Huan Hu , Kun Ai , Wenqing Zhu , Meishi Xia , Yixin Lai , Yihui Qian , Yanmei Xu , Fan Sun , Lei Zhang , Qionghui Zhong , Bo Huang , Xiaozhong Wang\",\"doi\":\"10.1016/j.arr.2025.102820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Colorectal cancer (CRC), a leading cause of cancer mortality globally, is shaped by dynamic interactions between intratumoral microbiota and the tumor microenvironment (TME). Emerging evidence highlights the critical role of intratumoral bacteria, fungi, and viruses, such as <em>Fusobacterium nucleatum</em> and genotoxic <em>Escherichia coli</em>, in driving carcinogenesis through DNA damage, immune evasion, and metabolic reprogramming. While their origins remain debated, hypotheses include mucosal barrier penetration, migration from adjacent tissues, hematogenous dissemination, and co-metastasis with tumor cells. Spatial profiling reveals non-randomized microbial distribution within immunosuppressive TME niches characterized by reduced T-cell infiltration and enriched immunosuppressive molecules. Mechanistically, microbiota-derived metabolites (e.g., butyrate) and genotoxins (e.g., colibactin) modulate host pathways, promote epithelial DNA damage, polarize immune cells (e.g., M2-like macrophages, Tregs), and collectively, these contribute to fostering tumor progression. Conversely, microbial peptides or STING pathway activation by commensals like <em>Bifidobacterium</em> may enhance antitumor immunity. Intratumoral microbiota significantly influences therapeutic outcomes: <em>F. nucleatum</em> induces chemoresistance via autophagy, while <em>Gammaproteobacteria</em> inactivate gemcitabine. Immunotherapy responses are similarly modulated, with microbiota either amplifying antitumor T-cell activity or suppressing immunity through cytokine-mediated pathways. Innovative strategies, including engineered probiotics, bacterial vectors for drug delivery, and nanotechnology-enabled microbial modulation (e.g., functionalized nanoparticles, biomaterial carriers), aim to exploit these interactions. However, challenges such as low microbial biomass, contamination risks, and interpatient heterogeneity complicate translational efforts. Multi-omics and spatial-profiling technologies offer promise in deciphering microbial-immune-metabolic networks, guiding personalized therapies. Future research must address the biocompatibility of microbial-nanotech hybrids and validate intratumoral microbiota as biomarkers or therapeutic targets. Bridging gut and tumor microbiome studies could unlock novel CRC management strategies, emphasizing the dual role of microbiota as oncogenic drivers and therapeutic allies in precision oncology.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"111 \",\"pages\":\"Article 102820\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163725001667\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001667","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The role of intratumoral microbiome in the occurrence, proliferation, metastasis of colorectal cancer and its underlying therapeutic strategies
Colorectal cancer (CRC), a leading cause of cancer mortality globally, is shaped by dynamic interactions between intratumoral microbiota and the tumor microenvironment (TME). Emerging evidence highlights the critical role of intratumoral bacteria, fungi, and viruses, such as Fusobacterium nucleatum and genotoxic Escherichia coli, in driving carcinogenesis through DNA damage, immune evasion, and metabolic reprogramming. While their origins remain debated, hypotheses include mucosal barrier penetration, migration from adjacent tissues, hematogenous dissemination, and co-metastasis with tumor cells. Spatial profiling reveals non-randomized microbial distribution within immunosuppressive TME niches characterized by reduced T-cell infiltration and enriched immunosuppressive molecules. Mechanistically, microbiota-derived metabolites (e.g., butyrate) and genotoxins (e.g., colibactin) modulate host pathways, promote epithelial DNA damage, polarize immune cells (e.g., M2-like macrophages, Tregs), and collectively, these contribute to fostering tumor progression. Conversely, microbial peptides or STING pathway activation by commensals like Bifidobacterium may enhance antitumor immunity. Intratumoral microbiota significantly influences therapeutic outcomes: F. nucleatum induces chemoresistance via autophagy, while Gammaproteobacteria inactivate gemcitabine. Immunotherapy responses are similarly modulated, with microbiota either amplifying antitumor T-cell activity or suppressing immunity through cytokine-mediated pathways. Innovative strategies, including engineered probiotics, bacterial vectors for drug delivery, and nanotechnology-enabled microbial modulation (e.g., functionalized nanoparticles, biomaterial carriers), aim to exploit these interactions. However, challenges such as low microbial biomass, contamination risks, and interpatient heterogeneity complicate translational efforts. Multi-omics and spatial-profiling technologies offer promise in deciphering microbial-immune-metabolic networks, guiding personalized therapies. Future research must address the biocompatibility of microbial-nanotech hybrids and validate intratumoral microbiota as biomarkers or therapeutic targets. Bridging gut and tumor microbiome studies could unlock novel CRC management strategies, emphasizing the dual role of microbiota as oncogenic drivers and therapeutic allies in precision oncology.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.