{"title":"呼吸铁电诱导kagome卤化铌单层的拓扑谷态","authors":"Kai-Qi Wang, Jun-Ding Zheng, Wen-Yi Tong, Chun-Gang Duan","doi":"10.1038/s41524-025-01717-z","DOIUrl":null,"url":null,"abstract":"<p>Recently, kagome lattices have garnered significant attention for their diverse properties in topology, magnetism, and electron correlations. However, the exploration of breathing kagome, which exhibit dynamic breathing behavior, remains relatively scarce. Structural breathing introduces an additional degree of freedom that is anticipated to fine-tune the exotic characteristic. In this study, we employ a combination of the <i>k</i><span>\\(\\cdot\\)</span><i>p</i> model and first-principles calculations to explore how breathing ferroelectricity modulate valley states within niobium halide monolayer. Through the interplay of magnetoelectric coupling and the lock-in between breathing and ferroelectric, we demonstrate that a breathing process can achieve valley polarization reversal and generate multiple valley states, including topologically nontrivial ones. These state transformations couple to circularly-polarized optical responses and various valley Hall effects. Our results suggest that breathing kagome represent promising platform for studying the interplay among structure, charge, spin and valley degrees of freedom, a crucial step toward developing multifunctional devices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"51 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breathing ferroelectricity induced topological valley states in kagome niobium halide monolayers\",\"authors\":\"Kai-Qi Wang, Jun-Ding Zheng, Wen-Yi Tong, Chun-Gang Duan\",\"doi\":\"10.1038/s41524-025-01717-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, kagome lattices have garnered significant attention for their diverse properties in topology, magnetism, and electron correlations. However, the exploration of breathing kagome, which exhibit dynamic breathing behavior, remains relatively scarce. Structural breathing introduces an additional degree of freedom that is anticipated to fine-tune the exotic characteristic. In this study, we employ a combination of the <i>k</i><span>\\\\(\\\\cdot\\\\)</span><i>p</i> model and first-principles calculations to explore how breathing ferroelectricity modulate valley states within niobium halide monolayer. Through the interplay of magnetoelectric coupling and the lock-in between breathing and ferroelectric, we demonstrate that a breathing process can achieve valley polarization reversal and generate multiple valley states, including topologically nontrivial ones. These state transformations couple to circularly-polarized optical responses and various valley Hall effects. Our results suggest that breathing kagome represent promising platform for studying the interplay among structure, charge, spin and valley degrees of freedom, a crucial step toward developing multifunctional devices.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01717-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01717-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Breathing ferroelectricity induced topological valley states in kagome niobium halide monolayers
Recently, kagome lattices have garnered significant attention for their diverse properties in topology, magnetism, and electron correlations. However, the exploration of breathing kagome, which exhibit dynamic breathing behavior, remains relatively scarce. Structural breathing introduces an additional degree of freedom that is anticipated to fine-tune the exotic characteristic. In this study, we employ a combination of the k\(\cdot\)p model and first-principles calculations to explore how breathing ferroelectricity modulate valley states within niobium halide monolayer. Through the interplay of magnetoelectric coupling and the lock-in between breathing and ferroelectric, we demonstrate that a breathing process can achieve valley polarization reversal and generate multiple valley states, including topologically nontrivial ones. These state transformations couple to circularly-polarized optical responses and various valley Hall effects. Our results suggest that breathing kagome represent promising platform for studying the interplay among structure, charge, spin and valley degrees of freedom, a crucial step toward developing multifunctional devices.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.