干细胞纳米技术应用于癌症治疗的药物传递系统:靶向治疗的新时代。

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Gyas Khan
{"title":"干细胞纳米技术应用于癌症治疗的药物传递系统:靶向治疗的新时代。","authors":"Gyas Khan","doi":"10.2174/0113816128379044250620122425","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is still one of the most serious and life-threatening diseases in humans, and the conventional chemotherapies, radiation treatments, and surgical methods have yet to provide an effective resolution due to some drawbacks concerning drug resistance, general toxicity, and poor targeting to tumor sites. To surmount these challenges, some innovative approaches are under exploration; hence, the emergence of more promising solutions in the format of nanotechnology that combine with stem cell (SC)-based drug delivery systems (DDS). Its advantages include autonomous proliferative potential and the ability to clonally generate various cell types, leading to malignant transformation. Additionally, they possess an innate ability to migrate toward tumor sites, making them highly effective vectors for targeted DDS. The integration of nanotechnology with SCs offers several benefits, such as controlled release of therapeutic molecules, improved bioavailability, and reduced systemic toxicity. These advantages may provide the opportunity to improve cancer therapy with fewer side effects than those resulting from conventional treatments. This review has focused on the emerging role of SC-nanotechnology-based DDS as a new era in targeted cancer treatment and has emphasized enhancing therapeutic outcomes with a more precise approach to cancer therapy.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem Cell Nanotechnology Applications as Drug Delivery Systems for Cancer Therapy: A New Era in Targeted Treatment.\",\"authors\":\"Gyas Khan\",\"doi\":\"10.2174/0113816128379044250620122425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is still one of the most serious and life-threatening diseases in humans, and the conventional chemotherapies, radiation treatments, and surgical methods have yet to provide an effective resolution due to some drawbacks concerning drug resistance, general toxicity, and poor targeting to tumor sites. To surmount these challenges, some innovative approaches are under exploration; hence, the emergence of more promising solutions in the format of nanotechnology that combine with stem cell (SC)-based drug delivery systems (DDS). Its advantages include autonomous proliferative potential and the ability to clonally generate various cell types, leading to malignant transformation. Additionally, they possess an innate ability to migrate toward tumor sites, making them highly effective vectors for targeted DDS. The integration of nanotechnology with SCs offers several benefits, such as controlled release of therapeutic molecules, improved bioavailability, and reduced systemic toxicity. These advantages may provide the opportunity to improve cancer therapy with fewer side effects than those resulting from conventional treatments. This review has focused on the emerging role of SC-nanotechnology-based DDS as a new era in targeted cancer treatment and has emphasized enhancing therapeutic outcomes with a more precise approach to cancer therapy.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128379044250620122425\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128379044250620122425","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

癌症仍然是人类最严重和最危及生命的疾病之一,传统的化疗、放疗和手术方法由于其耐药性、一般毒性和对肿瘤部位的靶向性差等缺点,尚未提供有效的解决方案。为了克服这些挑战,正在探索一些创新方法;因此,以纳米技术的形式出现了更有希望的解决方案,它结合了基于干细胞(SC)的药物输送系统(DDS)。它的优点包括自主增殖的潜力和克隆产生各种细胞类型的能力,导致恶性转化。此外,它们具有向肿瘤部位迁移的先天能力,使它们成为靶向DDS的高效载体。纳米技术与SCs的整合提供了几个好处,如治疗分子的控制释放,提高生物利用度,降低全身毒性。这些优势可能为改善癌症治疗提供机会,并且比传统治疗产生的副作用更少。这篇综述聚焦于基于sc纳米技术的DDS作为靶向癌症治疗的新时代的新兴作用,并强调了通过更精确的癌症治疗方法来提高治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stem Cell Nanotechnology Applications as Drug Delivery Systems for Cancer Therapy: A New Era in Targeted Treatment.

Cancer is still one of the most serious and life-threatening diseases in humans, and the conventional chemotherapies, radiation treatments, and surgical methods have yet to provide an effective resolution due to some drawbacks concerning drug resistance, general toxicity, and poor targeting to tumor sites. To surmount these challenges, some innovative approaches are under exploration; hence, the emergence of more promising solutions in the format of nanotechnology that combine with stem cell (SC)-based drug delivery systems (DDS). Its advantages include autonomous proliferative potential and the ability to clonally generate various cell types, leading to malignant transformation. Additionally, they possess an innate ability to migrate toward tumor sites, making them highly effective vectors for targeted DDS. The integration of nanotechnology with SCs offers several benefits, such as controlled release of therapeutic molecules, improved bioavailability, and reduced systemic toxicity. These advantages may provide the opportunity to improve cancer therapy with fewer side effects than those resulting from conventional treatments. This review has focused on the emerging role of SC-nanotechnology-based DDS as a new era in targeted cancer treatment and has emphasized enhancing therapeutic outcomes with a more precise approach to cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信