{"title":"双快速通道缓存:组织环形赛道工作作为L1缓存","authors":"Alejandro Valero;Vicente Lorente;Salvador Petit;Julio Sahuquillo","doi":"10.1109/TC.2025.3575909","DOIUrl":null,"url":null,"abstract":"Static Random-Access Memory (SRAM) is the fastest memory technology and has been the common design choice for implementing first-level (L1) caches in the processor pipeline, where speed is a key design issue that must be fulfilled. On the contrary, this technology offers much lower density compared to other technologies like Dynamic RAM, limiting L1 cache sizes of modern processors to a few tens of KB. This paper explores the use of slower but denser Domain Wall Memory (DWM) technology for L1 caches. This technology provides slow access times since it arranges multiple bits sequentially in a magnetic racetrack. To access these bits, they need to be shifted in order to place them under a header. A 1-bit shift usually takes one processor cycle, which can significantly hurt the application performance, making this working behavior inappropriate for L1 caches. Based on the locality (temporal and spatial) principles exploited by caches, this work proposes the Dual Fast-Track Cache (Dual FTC) design, a new approach to organizing a set of racetracks to build set-associative caches. Compared to a conventional SRAM cache, Dual FTC enhances storage capacity by 5× while incurring minimal shifting overhead, thereby rendering it a practical and appealing solution for L1 cache implementations. Experimental results show that the devised cache organization is as fast as an SRAM cache for 78% and 86% of the L1 data cache hits and L1 instruction cache hits, respectively (i.e., no shift is required). Consequently, due to the larger L1 cache capacities, significant system performance gains (by 22% on average) are obtained under the same silicon area.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 8","pages":"2812-2826"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11022726","citationCount":"0","resultStr":"{\"title\":\"Dual Fast-Track Cache: Organizing Ring-Shaped Racetracks to Work as L1 Caches\",\"authors\":\"Alejandro Valero;Vicente Lorente;Salvador Petit;Julio Sahuquillo\",\"doi\":\"10.1109/TC.2025.3575909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static Random-Access Memory (SRAM) is the fastest memory technology and has been the common design choice for implementing first-level (L1) caches in the processor pipeline, where speed is a key design issue that must be fulfilled. On the contrary, this technology offers much lower density compared to other technologies like Dynamic RAM, limiting L1 cache sizes of modern processors to a few tens of KB. This paper explores the use of slower but denser Domain Wall Memory (DWM) technology for L1 caches. This technology provides slow access times since it arranges multiple bits sequentially in a magnetic racetrack. To access these bits, they need to be shifted in order to place them under a header. A 1-bit shift usually takes one processor cycle, which can significantly hurt the application performance, making this working behavior inappropriate for L1 caches. Based on the locality (temporal and spatial) principles exploited by caches, this work proposes the Dual Fast-Track Cache (Dual FTC) design, a new approach to organizing a set of racetracks to build set-associative caches. Compared to a conventional SRAM cache, Dual FTC enhances storage capacity by 5× while incurring minimal shifting overhead, thereby rendering it a practical and appealing solution for L1 cache implementations. Experimental results show that the devised cache organization is as fast as an SRAM cache for 78% and 86% of the L1 data cache hits and L1 instruction cache hits, respectively (i.e., no shift is required). Consequently, due to the larger L1 cache capacities, significant system performance gains (by 22% on average) are obtained under the same silicon area.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 8\",\"pages\":\"2812-2826\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11022726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11022726/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11022726/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Dual Fast-Track Cache: Organizing Ring-Shaped Racetracks to Work as L1 Caches
Static Random-Access Memory (SRAM) is the fastest memory technology and has been the common design choice for implementing first-level (L1) caches in the processor pipeline, where speed is a key design issue that must be fulfilled. On the contrary, this technology offers much lower density compared to other technologies like Dynamic RAM, limiting L1 cache sizes of modern processors to a few tens of KB. This paper explores the use of slower but denser Domain Wall Memory (DWM) technology for L1 caches. This technology provides slow access times since it arranges multiple bits sequentially in a magnetic racetrack. To access these bits, they need to be shifted in order to place them under a header. A 1-bit shift usually takes one processor cycle, which can significantly hurt the application performance, making this working behavior inappropriate for L1 caches. Based on the locality (temporal and spatial) principles exploited by caches, this work proposes the Dual Fast-Track Cache (Dual FTC) design, a new approach to organizing a set of racetracks to build set-associative caches. Compared to a conventional SRAM cache, Dual FTC enhances storage capacity by 5× while incurring minimal shifting overhead, thereby rendering it a practical and appealing solution for L1 cache implementations. Experimental results show that the devised cache organization is as fast as an SRAM cache for 78% and 86% of the L1 data cache hits and L1 instruction cache hits, respectively (i.e., no shift is required). Consequently, due to the larger L1 cache capacities, significant system performance gains (by 22% on average) are obtained under the same silicon area.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.