抗菌治疗用智能反应材料:进展、机遇和挑战

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jieni Fu , Chaofeng Wang , Xiangmei Liu , Shengli Zhu , Yufeng Zheng , Zhaoyang Li , Zhenduo Cui , Yu Zhang , Hui Jiang , Yongping Cao , Paul K Chu , Shuilin Wu
{"title":"抗菌治疗用智能反应材料:进展、机遇和挑战","authors":"Jieni Fu ,&nbsp;Chaofeng Wang ,&nbsp;Xiangmei Liu ,&nbsp;Shengli Zhu ,&nbsp;Yufeng Zheng ,&nbsp;Zhaoyang Li ,&nbsp;Zhenduo Cui ,&nbsp;Yu Zhang ,&nbsp;Hui Jiang ,&nbsp;Yongping Cao ,&nbsp;Paul K Chu ,&nbsp;Shuilin Wu","doi":"10.1016/j.pmatsci.2025.101532","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial infections threaten global human health, driving the rapid development of antibacterial materials over the past two decades. However, the clinical application is limited due to the rapid presence of antibiotic-resistant bacteria and the brutal penetration of biofilm. ’Smart’ responsive antibacterial materials (SRAMs) that respond to endogenous/exogenous stimuli to release antibacterial factors are appealing therapeutic agents for developing next-generation antibacterial materials. Those materials can evade existing mechanisms associated with acquired drug resistance and could also provide an alternative strategy to treat biofilms due to their spatiotemporal controllability and negligible side effects. SRAMs have emerged as a promising tool to combat bacterial infections that are difficult to treat. To better understand the interaction between SRAMs and biological tissues, this review highlights the mechanisms underlying SRAM-mediated eradication of both planktonic bacteria and biofilms and recent advances in designing SRAMs that respond to internal/external stimuli. Meanwhile, we also summarize the latest progress in the development of SRAMs. Properties of internal- or external-stimuli-responsive smart antibacterial materials are outlined, and we also discuss the potential features required for antibacterial applications of various infectious diseases. Furthermore, it also discussed the current challenges and future prospects, particularly emphasizing clinical translation for these smart antimicrobial platforms.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101532"},"PeriodicalIF":33.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart responsive materials for antibacterial therapy: Progress, opportunities, and challenges\",\"authors\":\"Jieni Fu ,&nbsp;Chaofeng Wang ,&nbsp;Xiangmei Liu ,&nbsp;Shengli Zhu ,&nbsp;Yufeng Zheng ,&nbsp;Zhaoyang Li ,&nbsp;Zhenduo Cui ,&nbsp;Yu Zhang ,&nbsp;Hui Jiang ,&nbsp;Yongping Cao ,&nbsp;Paul K Chu ,&nbsp;Shuilin Wu\",\"doi\":\"10.1016/j.pmatsci.2025.101532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial infections threaten global human health, driving the rapid development of antibacterial materials over the past two decades. However, the clinical application is limited due to the rapid presence of antibiotic-resistant bacteria and the brutal penetration of biofilm. ’Smart’ responsive antibacterial materials (SRAMs) that respond to endogenous/exogenous stimuli to release antibacterial factors are appealing therapeutic agents for developing next-generation antibacterial materials. Those materials can evade existing mechanisms associated with acquired drug resistance and could also provide an alternative strategy to treat biofilms due to their spatiotemporal controllability and negligible side effects. SRAMs have emerged as a promising tool to combat bacterial infections that are difficult to treat. To better understand the interaction between SRAMs and biological tissues, this review highlights the mechanisms underlying SRAM-mediated eradication of both planktonic bacteria and biofilms and recent advances in designing SRAMs that respond to internal/external stimuli. Meanwhile, we also summarize the latest progress in the development of SRAMs. Properties of internal- or external-stimuli-responsive smart antibacterial materials are outlined, and we also discuss the potential features required for antibacterial applications of various infectious diseases. Furthermore, it also discussed the current challenges and future prospects, particularly emphasizing clinical translation for these smart antimicrobial platforms.</div></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"155 \",\"pages\":\"Article 101532\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642525001100\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001100","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细菌感染威胁着全球人类健康,推动了抗菌材料在过去二十年中的快速发展。然而,由于耐药细菌的快速存在和生物膜的残酷渗透,临床应用受到限制。“智能”反应性抗菌材料(sram)响应内源性/外源性刺激释放抗菌因子,是开发下一代抗菌材料的有吸引力的治疗剂。这些材料可以逃避与获得性耐药相关的现有机制,并且由于其时空可控性和可忽略的副作用,也可以提供治疗生物膜的替代策略。sram已经成为对抗难以治疗的细菌感染的一种很有前途的工具。为了更好地理解sram与生物组织之间的相互作用,本文重点介绍了sram介导的浮游细菌和生物膜根除的机制,以及设计响应内外刺激的sram的最新进展。同时,我们也总结了sram的最新发展进展。概述了内部或外部刺激响应智能抗菌材料的特性,并讨论了各种传染病抗菌应用所需的潜在特征。此外,还讨论了当前的挑战和未来的前景,特别强调了这些智能抗菌平台的临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart responsive materials for antibacterial therapy: Progress, opportunities, and challenges
Bacterial infections threaten global human health, driving the rapid development of antibacterial materials over the past two decades. However, the clinical application is limited due to the rapid presence of antibiotic-resistant bacteria and the brutal penetration of biofilm. ’Smart’ responsive antibacterial materials (SRAMs) that respond to endogenous/exogenous stimuli to release antibacterial factors are appealing therapeutic agents for developing next-generation antibacterial materials. Those materials can evade existing mechanisms associated with acquired drug resistance and could also provide an alternative strategy to treat biofilms due to their spatiotemporal controllability and negligible side effects. SRAMs have emerged as a promising tool to combat bacterial infections that are difficult to treat. To better understand the interaction between SRAMs and biological tissues, this review highlights the mechanisms underlying SRAM-mediated eradication of both planktonic bacteria and biofilms and recent advances in designing SRAMs that respond to internal/external stimuli. Meanwhile, we also summarize the latest progress in the development of SRAMs. Properties of internal- or external-stimuli-responsive smart antibacterial materials are outlined, and we also discuss the potential features required for antibacterial applications of various infectious diseases. Furthermore, it also discussed the current challenges and future prospects, particularly emphasizing clinical translation for these smart antimicrobial platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信