Laura F. DiGiovanni, Prabhsimran K. Khroud, Ruth E. Carmichael, Tina A. Schrader, Shivneet K. Gill, Kyla Germain, Robert Y. Jomphe, Christoph Wiesinger, Maxime Boutry, Maki Kamoshita, Daniel Snider, Garret Stubbings, Rong Hua, Noel Garber, Christian Hacker, Andrew D. Rutenberg, Roman A. Melnyk, Johannes Berger, Michael Schrader, Brian Raught, Peter K. Kim
{"title":"过氧化物酶体与线粒体接触时ROS的转移调节线粒体氧化还原","authors":"Laura F. DiGiovanni, Prabhsimran K. Khroud, Ruth E. Carmichael, Tina A. Schrader, Shivneet K. Gill, Kyla Germain, Robert Y. Jomphe, Christoph Wiesinger, Maxime Boutry, Maki Kamoshita, Daniel Snider, Garret Stubbings, Rong Hua, Noel Garber, Christian Hacker, Andrew D. Rutenberg, Roman A. Melnyk, Johannes Berger, Michael Schrader, Brian Raught, Peter K. Kim","doi":"10.1126/science.adn2804","DOIUrl":null,"url":null,"abstract":"<div >Maintenance of mitochondrial redox homeostasis is of fundamental importance to cellular health. Mitochondria harbor a host of intrinsic antioxidant defenses, but the contribution of extrinsic, nonmitochondrial antioxidant mechanisms is less well understood. We found a direct role for peroxisomes in maintaining mitochondrial redox homeostasis through contact-mediated reactive oxygen species (ROS) transfer. We found that ACBD5 and PTPIP51 form a contact between peroxisomes and mitochondria. The percentage of these contacts increased during mitochondrial oxidative stress and helped to maintain mitochondrial health through the transfer of mitochondrial ROS to the peroxisome lumen. Our findings reveal a multiorganelle layer of mitochondrial antioxidant defense—suggesting a direct mechanism by which peroxisomes contribute to mitochondrial health—and broaden the scope of known membrane contact site functions.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6756","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROS transfer at peroxisome-mitochondria contact regulates mitochondrial redox\",\"authors\":\"Laura F. DiGiovanni, Prabhsimran K. Khroud, Ruth E. Carmichael, Tina A. Schrader, Shivneet K. Gill, Kyla Germain, Robert Y. Jomphe, Christoph Wiesinger, Maxime Boutry, Maki Kamoshita, Daniel Snider, Garret Stubbings, Rong Hua, Noel Garber, Christian Hacker, Andrew D. Rutenberg, Roman A. Melnyk, Johannes Berger, Michael Schrader, Brian Raught, Peter K. Kim\",\"doi\":\"10.1126/science.adn2804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Maintenance of mitochondrial redox homeostasis is of fundamental importance to cellular health. Mitochondria harbor a host of intrinsic antioxidant defenses, but the contribution of extrinsic, nonmitochondrial antioxidant mechanisms is less well understood. We found a direct role for peroxisomes in maintaining mitochondrial redox homeostasis through contact-mediated reactive oxygen species (ROS) transfer. We found that ACBD5 and PTPIP51 form a contact between peroxisomes and mitochondria. The percentage of these contacts increased during mitochondrial oxidative stress and helped to maintain mitochondrial health through the transfer of mitochondrial ROS to the peroxisome lumen. Our findings reveal a multiorganelle layer of mitochondrial antioxidant defense—suggesting a direct mechanism by which peroxisomes contribute to mitochondrial health—and broaden the scope of known membrane contact site functions.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"389 6756\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adn2804\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn2804","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
ROS transfer at peroxisome-mitochondria contact regulates mitochondrial redox
Maintenance of mitochondrial redox homeostasis is of fundamental importance to cellular health. Mitochondria harbor a host of intrinsic antioxidant defenses, but the contribution of extrinsic, nonmitochondrial antioxidant mechanisms is less well understood. We found a direct role for peroxisomes in maintaining mitochondrial redox homeostasis through contact-mediated reactive oxygen species (ROS) transfer. We found that ACBD5 and PTPIP51 form a contact between peroxisomes and mitochondria. The percentage of these contacts increased during mitochondrial oxidative stress and helped to maintain mitochondrial health through the transfer of mitochondrial ROS to the peroxisome lumen. Our findings reveal a multiorganelle layer of mitochondrial antioxidant defense—suggesting a direct mechanism by which peroxisomes contribute to mitochondrial health—and broaden the scope of known membrane contact site functions.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.