{"title":"基于物理的高级互连电迁移模型","authors":"Wangyong Chen , Binyu Yin , Linlin Cai , Yi Wan","doi":"10.1016/j.microrel.2025.115862","DOIUrl":null,"url":null,"abstract":"<div><div>Electromigration (EM) prediction is becoming more significant for advanced back-end-of-line. In this work, we propose a physics-based EM model to achieve the high-accuracy and high-efficiency assessment for time-to-failure (TTF). The void evolution is considered during the EM degradation which includes the resistivity model, temperature model and activation energy correction model. The proposed model enables to depict the resistance degradation curves over time which agrees well with the experiment data. The influence of dimension, grain size, temperature, and current density on TTF of interconnects can be analyzed by the model, showing a potential application for fast EM prediction in high-density integration, especially for the advanced interconnects.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"173 ","pages":"Article 115862"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physics-based electromigration model for advanced interconnects\",\"authors\":\"Wangyong Chen , Binyu Yin , Linlin Cai , Yi Wan\",\"doi\":\"10.1016/j.microrel.2025.115862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electromigration (EM) prediction is becoming more significant for advanced back-end-of-line. In this work, we propose a physics-based EM model to achieve the high-accuracy and high-efficiency assessment for time-to-failure (TTF). The void evolution is considered during the EM degradation which includes the resistivity model, temperature model and activation energy correction model. The proposed model enables to depict the resistance degradation curves over time which agrees well with the experiment data. The influence of dimension, grain size, temperature, and current density on TTF of interconnects can be analyzed by the model, showing a potential application for fast EM prediction in high-density integration, especially for the advanced interconnects.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"173 \",\"pages\":\"Article 115862\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271425002756\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425002756","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A physics-based electromigration model for advanced interconnects
Electromigration (EM) prediction is becoming more significant for advanced back-end-of-line. In this work, we propose a physics-based EM model to achieve the high-accuracy and high-efficiency assessment for time-to-failure (TTF). The void evolution is considered during the EM degradation which includes the resistivity model, temperature model and activation energy correction model. The proposed model enables to depict the resistance degradation curves over time which agrees well with the experiment data. The influence of dimension, grain size, temperature, and current density on TTF of interconnects can be analyzed by the model, showing a potential application for fast EM prediction in high-density integration, especially for the advanced interconnects.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.