{"title":"基于多尺度特征提取和融合残差时间卷积网络的运动图像分类。","authors":"Zhangfang Hu, Kaixin Luo, Yan Liu","doi":"10.1080/10255842.2025.2528892","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-12"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of motor imagery based on multi-scale feature extraction and fusion-residual temporal convolutional network.\",\"authors\":\"Zhangfang Hu, Kaixin Luo, Yan Liu\",\"doi\":\"10.1080/10255842.2025.2528892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2528892\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2528892","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Classification of motor imagery based on multi-scale feature extraction and fusion-residual temporal convolutional network.
Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.