基于多尺度特征提取和融合残差时间卷积网络的运动图像分类。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhangfang Hu, Kaixin Luo, Yan Liu
{"title":"基于多尺度特征提取和融合残差时间卷积网络的运动图像分类。","authors":"Zhangfang Hu, Kaixin Luo, Yan Liu","doi":"10.1080/10255842.2025.2528892","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-12"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of motor imagery based on multi-scale feature extraction and fusion-residual temporal convolutional network.\",\"authors\":\"Zhangfang Hu, Kaixin Luo, Yan Liu\",\"doi\":\"10.1080/10255842.2025.2528892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2528892\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2528892","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(BIC)对脑电图信号进行解码,实现大脑与外部设备的交互。然而,传统的方法在运动图像脑电图(MI-EEG)分类中表现出有限的性能。在本文中,我们介绍了一种多尺度时间卷积网络(MS-TCNet),该网络采用并行多尺度卷积进行时空特征提取,高效通道关注(ECA)进行通道权重优化,融合残差时间卷积(FR-TCN)进行高级时间特征捕获。实验结果表明,MS-TCNet在BCI IV-2a和BCI IV-2b数据集上的解码准确率分别达到了87.85%和92.85%。提出的MS-TCNet在各种性能指标上超越了现有的基线模型,证明了其在推进MI-EEG解码方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of motor imagery based on multi-scale feature extraction and fusion-residual temporal convolutional network.

Brain-computer interface (BIC) decodes electroencephalogram (EEG) signals to realize the interaction between brain and external devices. However, traditional methods show limited performance in motor imagery electroencephalogram (MI-EEG) classification. In this paper, we introduce a multi-scale temporal convolutional network (MS-TCNet) that employs parallel multi-scale convolutions for spatiotemporal feature extraction, efficient channel attention (ECA) for channel weights optimization, and fusion-residual temporal convolution (FR-TCN) for high-level temporal feature capture. Experimental results show that MS-TCNet achieved remarkable decoding accuracies of 87.85% and 92.85% on the BCI IV-2a and BCI IV-2b datasets, respectively. The proposed MS-TCNet surpasses existing baseline models across various performance metrics, demonstrating its effectiveness in advancing MI-EEG decoding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信