{"title":"优化线键合工艺以提高汽车应用中四平无铅封装的热机械性能","authors":"Mei-Ling Wu;Che-Wei Kang","doi":"10.1109/TCPMT.2025.3563367","DOIUrl":null,"url":null,"abstract":"This study investigates how local warpage and stress near the sawing lines of quad flat no-lead (QFN) packages, under stringent automotive conditions, influence the wire bonding process. A finite element model, validated through experimental measurements, was developed to quantify deformation and stress distributions along the cutting paths. Three lead frame strip designs—one row one block, multiblock, and one block—were comparatively assessed under both thermal and mechanical loads. Results show that the one row one block design can reduce local deformation by up to 70%–75% (e.g., <inline-formula> <tex-math>$45~\\mu $ </tex-math></inline-formula>m versus <inline-formula> <tex-math>$159~\\mu $ </tex-math></inline-formula>m) compared to the one block configuration, significantly mitigating alignment errors and fatigue risk. Concurrently, its peak local stress is about 212 MPa—a 70% reduction relative to the 708 MPa observed in the one block design. These combined improvements highlight the necessity of balanced structural design in sawing regions to enhance wire bonding stability. Overall, these findings provide a robust framework for optimizing QFN packages under stringent automotive conditions, particularly by refining wire bonding design.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 7","pages":"1417-1424"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Wire Bonding Process for Enhanced Thermomechanical Performance of Quad Flat No-Lead (QFN) Packages in Automotive Applications\",\"authors\":\"Mei-Ling Wu;Che-Wei Kang\",\"doi\":\"10.1109/TCPMT.2025.3563367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates how local warpage and stress near the sawing lines of quad flat no-lead (QFN) packages, under stringent automotive conditions, influence the wire bonding process. A finite element model, validated through experimental measurements, was developed to quantify deformation and stress distributions along the cutting paths. Three lead frame strip designs—one row one block, multiblock, and one block—were comparatively assessed under both thermal and mechanical loads. Results show that the one row one block design can reduce local deformation by up to 70%–75% (e.g., <inline-formula> <tex-math>$45~\\\\mu $ </tex-math></inline-formula>m versus <inline-formula> <tex-math>$159~\\\\mu $ </tex-math></inline-formula>m) compared to the one block configuration, significantly mitigating alignment errors and fatigue risk. Concurrently, its peak local stress is about 212 MPa—a 70% reduction relative to the 708 MPa observed in the one block design. These combined improvements highlight the necessity of balanced structural design in sawing regions to enhance wire bonding stability. Overall, these findings provide a robust framework for optimizing QFN packages under stringent automotive conditions, particularly by refining wire bonding design.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 7\",\"pages\":\"1417-1424\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973109/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10973109/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimization of the Wire Bonding Process for Enhanced Thermomechanical Performance of Quad Flat No-Lead (QFN) Packages in Automotive Applications
This study investigates how local warpage and stress near the sawing lines of quad flat no-lead (QFN) packages, under stringent automotive conditions, influence the wire bonding process. A finite element model, validated through experimental measurements, was developed to quantify deformation and stress distributions along the cutting paths. Three lead frame strip designs—one row one block, multiblock, and one block—were comparatively assessed under both thermal and mechanical loads. Results show that the one row one block design can reduce local deformation by up to 70%–75% (e.g., $45~\mu $ m versus $159~\mu $ m) compared to the one block configuration, significantly mitigating alignment errors and fatigue risk. Concurrently, its peak local stress is about 212 MPa—a 70% reduction relative to the 708 MPa observed in the one block design. These combined improvements highlight the necessity of balanced structural design in sawing regions to enhance wire bonding stability. Overall, these findings provide a robust framework for optimizing QFN packages under stringent automotive conditions, particularly by refining wire bonding design.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.