{"title":"结合生物信息学技术研究牦牛乳干酪中两种新肽的抗炎活性","authors":"Wen Wang, Qi Liang, Baotang Zhao, Xuemei Song","doi":"10.1016/j.foodres.2025.116995","DOIUrl":null,"url":null,"abstract":"<div><div><strong>Background:</strong> Yak milk casein peptides exhibit promising anti-inflammatory activity, but there is a gap in the study of their anti-inflammatory mechanisms and specific molecular targets. <strong>Objective:</strong> This study aimed to elucidate the anti-inflammatory mechanisms of two novel yak casein-derived peptides, QEPVLGPVRGPFP (QP13) and VYPFPGPIPN (VN10), previously identified via bioinformatics screening. <strong>Methods:</strong> An LPS-induced RAW264.7 macrophage model was employed, and peptides were evaluated at concentrations of 187.5–1500 μg/mL, with indomethacin as a positive control. Molecular docking and 100 ns molecular dynamics simulations analyzed interactions with key inflammatory targets: inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). <strong>Results:</strong> At 1500 μg/mL, VN10 and QP13 were non-toxic to macrophages and exerted maximal inhibition on nitric oxide (NO) production (90.44 ± 0.88 % and 87.58 ± 0.88 %, respectively), TNF-α (67.56 ± 3.94 % and 60.32 ± 1.72 %), and IL-6 (80.87 ± 0.52 % and 67.02 ± 1.38 %). Both peptides surpassed indomethacin in suppressing NO. Molecular docking revealed hydrogen bonding interactions with critical residues (Trp-366, Thr-77, Asn-61, Leu-62) of iNOS, TNF-α, and IL-6. Molecular dynamics simulations confirmed the stability of the peptide-target protein complexes. <strong>Conclusion:</strong> This study establishes a molecular mechanistic basis for the anti-inflammatory actions of yak milk-derived peptides QP13 and VN10, promoting the application of dairy-derived anti-inflammatory peptides in functional foods and human nutrition.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"219 ","pages":"Article 116995"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining bioinformatics techniques to study the anti-inflammatory activity of two novel peptides from yak milk cheese\",\"authors\":\"Wen Wang, Qi Liang, Baotang Zhao, Xuemei Song\",\"doi\":\"10.1016/j.foodres.2025.116995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><strong>Background:</strong> Yak milk casein peptides exhibit promising anti-inflammatory activity, but there is a gap in the study of their anti-inflammatory mechanisms and specific molecular targets. <strong>Objective:</strong> This study aimed to elucidate the anti-inflammatory mechanisms of two novel yak casein-derived peptides, QEPVLGPVRGPFP (QP13) and VYPFPGPIPN (VN10), previously identified via bioinformatics screening. <strong>Methods:</strong> An LPS-induced RAW264.7 macrophage model was employed, and peptides were evaluated at concentrations of 187.5–1500 μg/mL, with indomethacin as a positive control. Molecular docking and 100 ns molecular dynamics simulations analyzed interactions with key inflammatory targets: inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). <strong>Results:</strong> At 1500 μg/mL, VN10 and QP13 were non-toxic to macrophages and exerted maximal inhibition on nitric oxide (NO) production (90.44 ± 0.88 % and 87.58 ± 0.88 %, respectively), TNF-α (67.56 ± 3.94 % and 60.32 ± 1.72 %), and IL-6 (80.87 ± 0.52 % and 67.02 ± 1.38 %). Both peptides surpassed indomethacin in suppressing NO. Molecular docking revealed hydrogen bonding interactions with critical residues (Trp-366, Thr-77, Asn-61, Leu-62) of iNOS, TNF-α, and IL-6. Molecular dynamics simulations confirmed the stability of the peptide-target protein complexes. <strong>Conclusion:</strong> This study establishes a molecular mechanistic basis for the anti-inflammatory actions of yak milk-derived peptides QP13 and VN10, promoting the application of dairy-derived anti-inflammatory peptides in functional foods and human nutrition.</div></div>\",\"PeriodicalId\":323,\"journal\":{\"name\":\"Food Research International\",\"volume\":\"219 \",\"pages\":\"Article 116995\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Research International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096399692501333X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096399692501333X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Combining bioinformatics techniques to study the anti-inflammatory activity of two novel peptides from yak milk cheese
Background: Yak milk casein peptides exhibit promising anti-inflammatory activity, but there is a gap in the study of their anti-inflammatory mechanisms and specific molecular targets. Objective: This study aimed to elucidate the anti-inflammatory mechanisms of two novel yak casein-derived peptides, QEPVLGPVRGPFP (QP13) and VYPFPGPIPN (VN10), previously identified via bioinformatics screening. Methods: An LPS-induced RAW264.7 macrophage model was employed, and peptides were evaluated at concentrations of 187.5–1500 μg/mL, with indomethacin as a positive control. Molecular docking and 100 ns molecular dynamics simulations analyzed interactions with key inflammatory targets: inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Results: At 1500 μg/mL, VN10 and QP13 were non-toxic to macrophages and exerted maximal inhibition on nitric oxide (NO) production (90.44 ± 0.88 % and 87.58 ± 0.88 %, respectively), TNF-α (67.56 ± 3.94 % and 60.32 ± 1.72 %), and IL-6 (80.87 ± 0.52 % and 67.02 ± 1.38 %). Both peptides surpassed indomethacin in suppressing NO. Molecular docking revealed hydrogen bonding interactions with critical residues (Trp-366, Thr-77, Asn-61, Leu-62) of iNOS, TNF-α, and IL-6. Molecular dynamics simulations confirmed the stability of the peptide-target protein complexes. Conclusion: This study establishes a molecular mechanistic basis for the anti-inflammatory actions of yak milk-derived peptides QP13 and VN10, promoting the application of dairy-derived anti-inflammatory peptides in functional foods and human nutrition.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.