Manuela Giovanna Basilicata , Eduardo Sommella , Lucia Scisciola , Giovanni Tortorella , Marco Malavolta , Chiara Giordani , Michelangela Barbieri , Pietro Campiglia , Giuseppe Paolisso
{"title":"多组学策略解码细胞衰老的分子景观。","authors":"Manuela Giovanna Basilicata , Eduardo Sommella , Lucia Scisciola , Giovanni Tortorella , Marco Malavolta , Chiara Giordani , Michelangela Barbieri , Pietro Campiglia , Giuseppe Paolisso","doi":"10.1016/j.arr.2025.102824","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular senescence is a conserved cellular program characterized by a permanent cell cycle arrest triggered by a variety of stressors. Originally described as a tumor-suppressive mechanism, it is now recognized to exert pleiotropic and context-dependent functions, contributing to key physiological processes such as embryogenesis and tissue repair, as well as to processes associated with aging and the development of age-related diseases. Unlike normal cells, senescent cells remain metabolically active despite their non-dividing state. They significantly impact their environment through the Senescence-Associated Secretory Phenotype (SASP), a complex mix of cytokines, growth factors, and proteases. This secretory profile can promote tissue repair and regeneration but, if persistent, contributes to chronic inflammation, fibrosis, and tissue dysfunction. Two major pathways primarily regulate senescence: the p53/p21 and p16^INK4a^/Rb axes. These respond to stress signals like DNA damage, oxidative stress, and oncogenic activation, enforcing stable cell cycle arrest to prevent uncontrolled proliferation. However, as senescent cells accumulate over time, their ongoing SASP activity disrupts tissue homeostasis, driving inflammation and age-related diseases. Recent advances in multi-omics technologies, including metabolomics, proteomics, and lipidomics, have provided deeper insights into the complex molecular changes within senescent cells, revealing new biomarkers and potential therapeutic targets. These approaches offer a comprehensive understanding of cellular senescence, but challenges remain in distinguishing the causal relationships within these data and translating findings into clinical applications. This review integrates recent multi-omics discoveries, highlighting their potential to refine our understanding of senescence and support the development of targeted interventions to extend healthspan and combat age-related pathologies.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102824"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics strategies to decode the molecular landscape of cellular senescence\",\"authors\":\"Manuela Giovanna Basilicata , Eduardo Sommella , Lucia Scisciola , Giovanni Tortorella , Marco Malavolta , Chiara Giordani , Michelangela Barbieri , Pietro Campiglia , Giuseppe Paolisso\",\"doi\":\"10.1016/j.arr.2025.102824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cellular senescence is a conserved cellular program characterized by a permanent cell cycle arrest triggered by a variety of stressors. Originally described as a tumor-suppressive mechanism, it is now recognized to exert pleiotropic and context-dependent functions, contributing to key physiological processes such as embryogenesis and tissue repair, as well as to processes associated with aging and the development of age-related diseases. Unlike normal cells, senescent cells remain metabolically active despite their non-dividing state. They significantly impact their environment through the Senescence-Associated Secretory Phenotype (SASP), a complex mix of cytokines, growth factors, and proteases. This secretory profile can promote tissue repair and regeneration but, if persistent, contributes to chronic inflammation, fibrosis, and tissue dysfunction. Two major pathways primarily regulate senescence: the p53/p21 and p16^INK4a^/Rb axes. These respond to stress signals like DNA damage, oxidative stress, and oncogenic activation, enforcing stable cell cycle arrest to prevent uncontrolled proliferation. However, as senescent cells accumulate over time, their ongoing SASP activity disrupts tissue homeostasis, driving inflammation and age-related diseases. Recent advances in multi-omics technologies, including metabolomics, proteomics, and lipidomics, have provided deeper insights into the complex molecular changes within senescent cells, revealing new biomarkers and potential therapeutic targets. These approaches offer a comprehensive understanding of cellular senescence, but challenges remain in distinguishing the causal relationships within these data and translating findings into clinical applications. This review integrates recent multi-omics discoveries, highlighting their potential to refine our understanding of senescence and support the development of targeted interventions to extend healthspan and combat age-related pathologies.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"111 \",\"pages\":\"Article 102824\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163725001709\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001709","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Multi-omics strategies to decode the molecular landscape of cellular senescence
Cellular senescence is a conserved cellular program characterized by a permanent cell cycle arrest triggered by a variety of stressors. Originally described as a tumor-suppressive mechanism, it is now recognized to exert pleiotropic and context-dependent functions, contributing to key physiological processes such as embryogenesis and tissue repair, as well as to processes associated with aging and the development of age-related diseases. Unlike normal cells, senescent cells remain metabolically active despite their non-dividing state. They significantly impact their environment through the Senescence-Associated Secretory Phenotype (SASP), a complex mix of cytokines, growth factors, and proteases. This secretory profile can promote tissue repair and regeneration but, if persistent, contributes to chronic inflammation, fibrosis, and tissue dysfunction. Two major pathways primarily regulate senescence: the p53/p21 and p16^INK4a^/Rb axes. These respond to stress signals like DNA damage, oxidative stress, and oncogenic activation, enforcing stable cell cycle arrest to prevent uncontrolled proliferation. However, as senescent cells accumulate over time, their ongoing SASP activity disrupts tissue homeostasis, driving inflammation and age-related diseases. Recent advances in multi-omics technologies, including metabolomics, proteomics, and lipidomics, have provided deeper insights into the complex molecular changes within senescent cells, revealing new biomarkers and potential therapeutic targets. These approaches offer a comprehensive understanding of cellular senescence, but challenges remain in distinguishing the causal relationships within these data and translating findings into clinical applications. This review integrates recent multi-omics discoveries, highlighting their potential to refine our understanding of senescence and support the development of targeted interventions to extend healthspan and combat age-related pathologies.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.