SPARC:一个可靠的SNV鉴定和突变确认的Cas12a/Cas13a双通道CRISPR平台。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jialing Zhong,Yong Chen,Yueyu Dong,Chuanghao Guo,Yizhen Liu
{"title":"SPARC:一个可靠的SNV鉴定和突变确认的Cas12a/Cas13a双通道CRISPR平台。","authors":"Jialing Zhong,Yong Chen,Yueyu Dong,Chuanghao Guo,Yizhen Liu","doi":"10.1021/acs.analchem.5c02141","DOIUrl":null,"url":null,"abstract":"Rapid and reliable detection of single nucleotide variants (SNVs) is essential for accurate pathogen diagnostics, genetic mutation screening, and personalized medicine. However, existing CRISPR-based nucleic acid detection platforms frequently suffer from ambiguous signal interpretation, specificity limitations, and complex assay workflows. Herein, we introduce SPARC (specific and precise mutation recognition with Cas12a/Cas13a), a novel orthogonal dual-channel CRISPR assay that significantly enhances the SNV detection reliability. SPARC integrates Acidaminococcus sp. Cas12a (AsCas12a), which specifically detects a conserved region as an internal reference, with our recently identified DNA-activated Leptotrichia buccalis Cas13a (LbuCas13a), which exhibits exceptionally high intrinsic SNV specificity without requiring engineered crRNA mismatches. The orthogonal design uniquely resolves the common diagnostic ambiguity between genuine SNVs and target absence. Combined with recombinase polymerase amplification (RPA) and T7 exonuclease digestion, the SPARC platform achieved a sensitivity as low as 1 aM. We demonstrated the platform's robust clinical applicability through successful detection and accurate differentiation of hepatitis B virus (HBV) and clinically significant YMDD resistance mutations. This work presents an innovative and versatile CRISPR-based solution, highlighting substantial potential for advancing clinical diagnostics and precision medicine.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"2 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPARC: An Orthogonal Cas12a/Cas13a Dual-Channel CRISPR Platform for Reliable SNV Identification and Mutation Confirmation.\",\"authors\":\"Jialing Zhong,Yong Chen,Yueyu Dong,Chuanghao Guo,Yizhen Liu\",\"doi\":\"10.1021/acs.analchem.5c02141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid and reliable detection of single nucleotide variants (SNVs) is essential for accurate pathogen diagnostics, genetic mutation screening, and personalized medicine. However, existing CRISPR-based nucleic acid detection platforms frequently suffer from ambiguous signal interpretation, specificity limitations, and complex assay workflows. Herein, we introduce SPARC (specific and precise mutation recognition with Cas12a/Cas13a), a novel orthogonal dual-channel CRISPR assay that significantly enhances the SNV detection reliability. SPARC integrates Acidaminococcus sp. Cas12a (AsCas12a), which specifically detects a conserved region as an internal reference, with our recently identified DNA-activated Leptotrichia buccalis Cas13a (LbuCas13a), which exhibits exceptionally high intrinsic SNV specificity without requiring engineered crRNA mismatches. The orthogonal design uniquely resolves the common diagnostic ambiguity between genuine SNVs and target absence. Combined with recombinase polymerase amplification (RPA) and T7 exonuclease digestion, the SPARC platform achieved a sensitivity as low as 1 aM. We demonstrated the platform's robust clinical applicability through successful detection and accurate differentiation of hepatitis B virus (HBV) and clinically significant YMDD resistance mutations. This work presents an innovative and versatile CRISPR-based solution, highlighting substantial potential for advancing clinical diagnostics and precision medicine.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c02141\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

快速可靠的单核苷酸变异(snv)检测对于准确的病原体诊断、基因突变筛查和个性化医疗至关重要。然而,现有的基于crispr的核酸检测平台经常存在信号解释不明确、特异性限制和复杂的分析工作流程等问题。在此,我们引入了SPARC (Cas12a/Cas13a特异性和精确的突变识别),这是一种新型的正交双通道CRISPR检测方法,可显著提高SNV检测的可靠性。SPARC将特异性检测保守区域的酸胺球菌Cas12a (AsCas12a)与我们最近发现的dna激活的颊毛细毛球菌Cas13a (LbuCas13a)整合在一起,后者表现出异常高的SNV特异性,无需工程crRNA错配。正交设计独特地解决了真实snv和目标缺失之间常见的诊断歧义。结合重组酶聚合酶扩增(RPA)和T7外切酶酶切,SPARC平台的灵敏度低至1 aM。我们通过成功检测和准确区分乙型肝炎病毒(HBV)和临床显著的YMDD耐药突变,证明了该平台强大的临床适用性。这项工作提出了一种创新和通用的基于crispr的解决方案,突出了推进临床诊断和精准医学的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPARC: An Orthogonal Cas12a/Cas13a Dual-Channel CRISPR Platform for Reliable SNV Identification and Mutation Confirmation.
Rapid and reliable detection of single nucleotide variants (SNVs) is essential for accurate pathogen diagnostics, genetic mutation screening, and personalized medicine. However, existing CRISPR-based nucleic acid detection platforms frequently suffer from ambiguous signal interpretation, specificity limitations, and complex assay workflows. Herein, we introduce SPARC (specific and precise mutation recognition with Cas12a/Cas13a), a novel orthogonal dual-channel CRISPR assay that significantly enhances the SNV detection reliability. SPARC integrates Acidaminococcus sp. Cas12a (AsCas12a), which specifically detects a conserved region as an internal reference, with our recently identified DNA-activated Leptotrichia buccalis Cas13a (LbuCas13a), which exhibits exceptionally high intrinsic SNV specificity without requiring engineered crRNA mismatches. The orthogonal design uniquely resolves the common diagnostic ambiguity between genuine SNVs and target absence. Combined with recombinase polymerase amplification (RPA) and T7 exonuclease digestion, the SPARC platform achieved a sensitivity as low as 1 aM. We demonstrated the platform's robust clinical applicability through successful detection and accurate differentiation of hepatitis B virus (HBV) and clinically significant YMDD resistance mutations. This work presents an innovative and versatile CRISPR-based solution, highlighting substantial potential for advancing clinical diagnostics and precision medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信