{"title":"侧连接卷积神经网络在阻塞性睡眠呼吸暂停低通气分类中的应用。","authors":"Junming Zhang, Yushuai Wang, Ruxian Yao, Jinfeng Gao, Haitao Wu","doi":"10.1080/10255842.2025.2524478","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the successful operation of convolutional neural networks (CNN) with obstructive sleep apnea hypopnea (OSAHS) classification, the interpretability of these models is poor. The limited capacity to understand models hinders the comprehension of end-users, including sleep specialists. At the same time, these models need labeled data; however, this is a time-consuming, labor-intensive, and costly process. Furthermore, the presence of lateral connections plays a crucial role in the field of visual neurobiology. However, up until now, there has been a lack of research on CNN that incorporate lateral connections. In light of this, we introduce a novel CNN architecture called the lateral connection CNN (LCCNN), which integrates the semantic arrangement of neurons to classify OSAHS. The LCCNN consists of several layers, including a convolution layer for extracting local features, a lateral connection layer for detecting salient wave features, a competition layer for updating filters in an unsupervised manner, and a pooling layer. The competition layer ensures that adjacent filters in each convolution layer have similar weight distribution, thus realizing the semantic arrangement of neurons in the LCCNN. We evaluate the performance of the proposed model using the University College Dublin database (UCD) and the Physionet Challenge database (PCD). The results show that the proposed model achieves high total accuracies of 97.3% (with a kappa coefficient of 0.9) on UCD and 95.6% (with a kappa coefficient of 0.83) on PCD. This work can serve as a foundation for future research on unsupervised deep learning models.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral connection convolutional neural networks for obstructive sleep apnea hypopnea classification.\",\"authors\":\"Junming Zhang, Yushuai Wang, Ruxian Yao, Jinfeng Gao, Haitao Wu\",\"doi\":\"10.1080/10255842.2025.2524478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the successful operation of convolutional neural networks (CNN) with obstructive sleep apnea hypopnea (OSAHS) classification, the interpretability of these models is poor. The limited capacity to understand models hinders the comprehension of end-users, including sleep specialists. At the same time, these models need labeled data; however, this is a time-consuming, labor-intensive, and costly process. Furthermore, the presence of lateral connections plays a crucial role in the field of visual neurobiology. However, up until now, there has been a lack of research on CNN that incorporate lateral connections. In light of this, we introduce a novel CNN architecture called the lateral connection CNN (LCCNN), which integrates the semantic arrangement of neurons to classify OSAHS. The LCCNN consists of several layers, including a convolution layer for extracting local features, a lateral connection layer for detecting salient wave features, a competition layer for updating filters in an unsupervised manner, and a pooling layer. The competition layer ensures that adjacent filters in each convolution layer have similar weight distribution, thus realizing the semantic arrangement of neurons in the LCCNN. We evaluate the performance of the proposed model using the University College Dublin database (UCD) and the Physionet Challenge database (PCD). The results show that the proposed model achieves high total accuracies of 97.3% (with a kappa coefficient of 0.9) on UCD and 95.6% (with a kappa coefficient of 0.83) on PCD. This work can serve as a foundation for future research on unsupervised deep learning models.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2524478\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2524478","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Despite the successful operation of convolutional neural networks (CNN) with obstructive sleep apnea hypopnea (OSAHS) classification, the interpretability of these models is poor. The limited capacity to understand models hinders the comprehension of end-users, including sleep specialists. At the same time, these models need labeled data; however, this is a time-consuming, labor-intensive, and costly process. Furthermore, the presence of lateral connections plays a crucial role in the field of visual neurobiology. However, up until now, there has been a lack of research on CNN that incorporate lateral connections. In light of this, we introduce a novel CNN architecture called the lateral connection CNN (LCCNN), which integrates the semantic arrangement of neurons to classify OSAHS. The LCCNN consists of several layers, including a convolution layer for extracting local features, a lateral connection layer for detecting salient wave features, a competition layer for updating filters in an unsupervised manner, and a pooling layer. The competition layer ensures that adjacent filters in each convolution layer have similar weight distribution, thus realizing the semantic arrangement of neurons in the LCCNN. We evaluate the performance of the proposed model using the University College Dublin database (UCD) and the Physionet Challenge database (PCD). The results show that the proposed model achieves high total accuracies of 97.3% (with a kappa coefficient of 0.9) on UCD and 95.6% (with a kappa coefficient of 0.83) on PCD. This work can serve as a foundation for future research on unsupervised deep learning models.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.