甲脒基Ruddlesden - Popper和Dion-Jacobson层状杂化钙钛矿中高氮相的可及性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ghewa AlSabeh, Vladislav Slama, Masaud Almalki, Lena Merten, Paul Zimmermann, Alexander Hinderhofer, Pascal Alexander Schouwink, Virginia Carnevali, Nikolaos Lempesis, Lorenzo Agosta, Frank Schreiber, Ursula Rothlisberger, Michael Grätzel, Jovana V. Milić
{"title":"甲脒基Ruddlesden - Popper和Dion-Jacobson层状杂化钙钛矿中高氮相的可及性","authors":"Ghewa AlSabeh, Vladislav Slama, Masaud Almalki, Lena Merten, Paul Zimmermann, Alexander Hinderhofer, Pascal Alexander Schouwink, Virginia Carnevali, Nikolaos Lempesis, Lorenzo Agosta, Frank Schreiber, Ursula Rothlisberger, Michael Grätzel, Jovana V. Milić","doi":"10.1002/aelm.202500164","DOIUrl":null,"url":null,"abstract":"Layered (2D) hybrid perovskites offer a promising alternative for stabilizing halide perovskite materials, with a growing interest in formamidinium (FA<jats:sup>+</jats:sup>) lead iodide derivatives for photovoltaics due to their exceptional optoelectronic properties. While their potential increases with the number of inorganic layers (<jats:italic>n</jats:italic>), the experimental evidence suggests that obtaining <jats:italic>n &gt;</jats:italic> 2 phases is challenging for FA‐based layered perovskites. To address this challenge and identify the conditions governing the formation of higher‐<jats:italic>n</jats:italic> phases, representative FA‐based layered hybrid perovskite materials containing aromatic spacer cations, namely benzylammonium (BNA) and 1,4‐phenylenedimethanammonium (PDMA)—are investigated as model systems for the corresponding Ruddlesden‐Popper and Dion‐Jacobson phases based on (BNA)<jats:sub>2</jats:sub>FA<jats:sub>n–1</jats:sub>Pb<jats:sub>n</jats:sub>I<jats:sub>3n+1</jats:sub> and (PDMA)FA<jats:sub>n–1</jats:sub>Pb<jats:sub>n</jats:sub>I<jats:sub>3n+1</jats:sub> formulations (<jats:italic>n =</jats:italic> 1–3), respectively. Moreover, the effect of Cs<jats:sup>+</jats:sup> cations on the formation of <jats:italic>n &gt;</jats:italic> 1 phases is explored through a combination of X‐ray scattering measurements, solid‐state NMR spectroscopy, optoelectronic characterization, and density functional theory calculations. Despite improved photovoltaic performances, the formation of higher (<jats:italic>n &gt;</jats:italic> 2) phases is excluded, even in the presence of Cs<jats:sup>+</jats:sup>, due to the favorable formation of other low‐dimensional phases revealed by the theoretical investigation. The results contribute to a comprehensive understanding of these materials of broad interest to their application in optoelectronics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"20 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Accessibility of Higher‐n Phases in Formamidinium‐Based Ruddlesden‐Popper and Dion–Jacobson Layered Hybrid Perovskites\",\"authors\":\"Ghewa AlSabeh, Vladislav Slama, Masaud Almalki, Lena Merten, Paul Zimmermann, Alexander Hinderhofer, Pascal Alexander Schouwink, Virginia Carnevali, Nikolaos Lempesis, Lorenzo Agosta, Frank Schreiber, Ursula Rothlisberger, Michael Grätzel, Jovana V. Milić\",\"doi\":\"10.1002/aelm.202500164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered (2D) hybrid perovskites offer a promising alternative for stabilizing halide perovskite materials, with a growing interest in formamidinium (FA<jats:sup>+</jats:sup>) lead iodide derivatives for photovoltaics due to their exceptional optoelectronic properties. While their potential increases with the number of inorganic layers (<jats:italic>n</jats:italic>), the experimental evidence suggests that obtaining <jats:italic>n &gt;</jats:italic> 2 phases is challenging for FA‐based layered perovskites. To address this challenge and identify the conditions governing the formation of higher‐<jats:italic>n</jats:italic> phases, representative FA‐based layered hybrid perovskite materials containing aromatic spacer cations, namely benzylammonium (BNA) and 1,4‐phenylenedimethanammonium (PDMA)—are investigated as model systems for the corresponding Ruddlesden‐Popper and Dion‐Jacobson phases based on (BNA)<jats:sub>2</jats:sub>FA<jats:sub>n–1</jats:sub>Pb<jats:sub>n</jats:sub>I<jats:sub>3n+1</jats:sub> and (PDMA)FA<jats:sub>n–1</jats:sub>Pb<jats:sub>n</jats:sub>I<jats:sub>3n+1</jats:sub> formulations (<jats:italic>n =</jats:italic> 1–3), respectively. Moreover, the effect of Cs<jats:sup>+</jats:sup> cations on the formation of <jats:italic>n &gt;</jats:italic> 1 phases is explored through a combination of X‐ray scattering measurements, solid‐state NMR spectroscopy, optoelectronic characterization, and density functional theory calculations. Despite improved photovoltaic performances, the formation of higher (<jats:italic>n &gt;</jats:italic> 2) phases is excluded, even in the presence of Cs<jats:sup>+</jats:sup>, due to the favorable formation of other low‐dimensional phases revealed by the theoretical investigation. The results contribute to a comprehensive understanding of these materials of broad interest to their application in optoelectronics.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500164\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500164","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层状(2D)杂化钙钛矿为稳定卤化物钙钛矿材料提供了一种很有前途的替代方案,由于其优异的光电性能,人们对用于光伏发电的甲脒(FA+)碘化铅衍生物越来越感兴趣。虽然它们的潜力随着无机层数(n)的增加而增加,但实验证据表明,获得n >;对于FA基层状钙钛矿来说,2相是具有挑战性的。为了解决这一挑战并确定控制高n相形成的条件,研究了含有芳香间隔阳离子的代表性FA基层状杂化钙钛矿材料,即苯铵(BNA)和1,4 -苯二甲基铵(PDMA),作为相应的Ruddlesden - Popper和Dion - Jacobson相的模型体系,分别基于(BNA) 2FAn-1PbnI3n +1和(PDMA) FAn-1PbnI3n +1配方(n = 1 - 3)。此外,Cs+阳离子对n >形成的影响;通过X射线散射测量、固态核磁共振波谱、光电表征和密度泛函理论计算相结合来探索1相。尽管提高了光伏性能,但形成了更高的(n >;2)相被排除在外,即使在Cs+存在的情况下,由于理论研究揭示了其他低维相的有利形成。这些结果有助于全面了解这些材料在光电子学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Accessibility of Higher‐n Phases in Formamidinium‐Based Ruddlesden‐Popper and Dion–Jacobson Layered Hybrid Perovskites
Layered (2D) hybrid perovskites offer a promising alternative for stabilizing halide perovskite materials, with a growing interest in formamidinium (FA+) lead iodide derivatives for photovoltaics due to their exceptional optoelectronic properties. While their potential increases with the number of inorganic layers (n), the experimental evidence suggests that obtaining n > 2 phases is challenging for FA‐based layered perovskites. To address this challenge and identify the conditions governing the formation of higher‐n phases, representative FA‐based layered hybrid perovskite materials containing aromatic spacer cations, namely benzylammonium (BNA) and 1,4‐phenylenedimethanammonium (PDMA)—are investigated as model systems for the corresponding Ruddlesden‐Popper and Dion‐Jacobson phases based on (BNA)2FAn–1PbnI3n+1 and (PDMA)FAn–1PbnI3n+1 formulations (n = 1–3), respectively. Moreover, the effect of Cs+ cations on the formation of n > 1 phases is explored through a combination of X‐ray scattering measurements, solid‐state NMR spectroscopy, optoelectronic characterization, and density functional theory calculations. Despite improved photovoltaic performances, the formation of higher (n > 2) phases is excluded, even in the presence of Cs+, due to the favorable formation of other low‐dimensional phases revealed by the theoretical investigation. The results contribute to a comprehensive understanding of these materials of broad interest to their application in optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信