{"title":"向神经网络教授氧化态","authors":"Cristiano Malica, Nicola Marzari","doi":"10.1038/s41524-025-01709-z","DOIUrl":null,"url":null,"abstract":"<p>While the accurate description of redox reactions remains a challenge for first-principles calculations, it has been shown that extended Hubbard functionals (DFT+U+V) can provide a reliable approach, mitigating self-interaction errors, in materials with strongly localized <i>d</i> or <i>f</i> electrons. Here, we first show that DFT+U+V molecular dynamics is capable of following the adiabatic evolution of oxidation states over time, using representative Li-ion cathode materials. In turn, this allows to develop redox-aware machine-learning potentials. We show that considering atoms with different oxidation states (as accurately predicted by DFT+U+V) as distinct species in the training leads to potentials that are able to identify the correct ground state and pattern of oxidation states for redox elements present. This can be achieved, e.g., through a systematic combinatorial search for the lowest-energy configuration or with stochastic methods. This brings the advantages of machine-learning potentials to key technological applications (e.g., rechargeable batteries), which require an accurate description of the evolution of redox states.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"48 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teaching oxidation states to neural networks\",\"authors\":\"Cristiano Malica, Nicola Marzari\",\"doi\":\"10.1038/s41524-025-01709-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While the accurate description of redox reactions remains a challenge for first-principles calculations, it has been shown that extended Hubbard functionals (DFT+U+V) can provide a reliable approach, mitigating self-interaction errors, in materials with strongly localized <i>d</i> or <i>f</i> electrons. Here, we first show that DFT+U+V molecular dynamics is capable of following the adiabatic evolution of oxidation states over time, using representative Li-ion cathode materials. In turn, this allows to develop redox-aware machine-learning potentials. We show that considering atoms with different oxidation states (as accurately predicted by DFT+U+V) as distinct species in the training leads to potentials that are able to identify the correct ground state and pattern of oxidation states for redox elements present. This can be achieved, e.g., through a systematic combinatorial search for the lowest-energy configuration or with stochastic methods. This brings the advantages of machine-learning potentials to key technological applications (e.g., rechargeable batteries), which require an accurate description of the evolution of redox states.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01709-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01709-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
While the accurate description of redox reactions remains a challenge for first-principles calculations, it has been shown that extended Hubbard functionals (DFT+U+V) can provide a reliable approach, mitigating self-interaction errors, in materials with strongly localized d or f electrons. Here, we first show that DFT+U+V molecular dynamics is capable of following the adiabatic evolution of oxidation states over time, using representative Li-ion cathode materials. In turn, this allows to develop redox-aware machine-learning potentials. We show that considering atoms with different oxidation states (as accurately predicted by DFT+U+V) as distinct species in the training leads to potentials that are able to identify the correct ground state and pattern of oxidation states for redox elements present. This can be achieved, e.g., through a systematic combinatorial search for the lowest-energy configuration or with stochastic methods. This brings the advantages of machine-learning potentials to key technological applications (e.g., rechargeable batteries), which require an accurate description of the evolution of redox states.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.