基于半监督自编码器的脑电信号精神负荷识别。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Qi Liu, Xu Jiang, Huanjie Wang, Jingjing Chen
{"title":"基于半监督自编码器的脑电信号精神负荷识别。","authors":"Qi Liu, Xu Jiang, Huanjie Wang, Jingjing Chen","doi":"10.1080/10255842.2025.2523310","DOIUrl":null,"url":null,"abstract":"<p><p>Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mental workload recognition from EEG signals via semi-supervised autoencoders.\",\"authors\":\"Qi Liu, Xu Jiang, Huanjie Wang, Jingjing Chen\",\"doi\":\"10.1080/10255842.2025.2523310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2523310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2523310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

心理工作量——完成任务的认知努力——在系统设计、医疗保健和人机交互等领域至关重要。监督学习通常用于基于脑电图的工作负载识别,但受到标记数据稀缺的限制。为了解决这个问题,我们提出了半监督自编码器,它结合了标记和丰富的未标记数据。我们的模型将一个有监督的目标集成到一个无监督的自编码器中,形成一个联合函数,使重建和预测误差最小化。这增强了辨别力。为了克服消失/爆炸梯度,我们在图层之间添加跳跃连接。在两个脑电数据集上进行了测试,该框架在二值脑负荷分类上取得了较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mental workload recognition from EEG signals via semi-supervised autoencoders.

Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信