{"title":"基于半监督自编码器的脑电信号精神负荷识别。","authors":"Qi Liu, Xu Jiang, Huanjie Wang, Jingjing Chen","doi":"10.1080/10255842.2025.2523310","DOIUrl":null,"url":null,"abstract":"<p><p>Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mental workload recognition from EEG signals via semi-supervised autoencoders.\",\"authors\":\"Qi Liu, Xu Jiang, Huanjie Wang, Jingjing Chen\",\"doi\":\"10.1080/10255842.2025.2523310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2523310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2523310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Mental workload recognition from EEG signals via semi-supervised autoencoders.
Mental workload-the cognitive effort to complete tasks-is vital in fields like system design, healthcare, and human-machine interaction. Supervised learning is often used for EEG-based workload recognition but is limited by scarce labeled data. To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data. Our model integrates a supervised objective into an unsupervised autoencoder, forming a joint function that minimizes both reconstruction and prediction errors. This enhances discriminative power. To overcome vanishing/exploding gradients, we add skip connections between layers. Tested on two EEG datasets, our framework achieved high accuracy in binary mental workload classification.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.