{"title":"高维分位数回归与对比惩罚的综合分析。","authors":"Panpan Ren, Xu Liu, Xiao Zhang, Peng Zhan, Tingting Qiu","doi":"10.1080/02664763.2024.2438799","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of big data, the simultaneous analysis of multiple high-dimensional, heavy-tailed datasets has become essential. Integrative analysis offers a powerful approach to combine and synthesize information from these various datasets, and often outperforming traditional meta-analysis and single-dataset analysis. In this paper, we introduce a novel high-dimensional integrative quantile regression that can accommodate the complexities inherent in multi-dataset analysis. A contrast penalty that smooths regression coefficients is introduced to account for across-dataset structures and improve variable selection. To ease the computational burden associated with high-dimensional quantile regression, a new algorithm is developed that is effective at computing solution paths and selecting significant variables. Monte Carlo simulations demonstrate its competitive performance. Additionally, the proposed method is applied to data from the China Health and Retirement Longitudinal Study, illustrating its practical utility in identifying influential factors affecting support income for the elderly. Findings indicate that adult children's individual characteristics and emotional comfort are primary factors of support income, and the extent of their impact varies across regions.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 9","pages":"1760-1776"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of high-dimensional quantile regression with contrasted penalization.\",\"authors\":\"Panpan Ren, Xu Liu, Xiao Zhang, Peng Zhan, Tingting Qiu\",\"doi\":\"10.1080/02664763.2024.2438799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the era of big data, the simultaneous analysis of multiple high-dimensional, heavy-tailed datasets has become essential. Integrative analysis offers a powerful approach to combine and synthesize information from these various datasets, and often outperforming traditional meta-analysis and single-dataset analysis. In this paper, we introduce a novel high-dimensional integrative quantile regression that can accommodate the complexities inherent in multi-dataset analysis. A contrast penalty that smooths regression coefficients is introduced to account for across-dataset structures and improve variable selection. To ease the computational burden associated with high-dimensional quantile regression, a new algorithm is developed that is effective at computing solution paths and selecting significant variables. Monte Carlo simulations demonstrate its competitive performance. Additionally, the proposed method is applied to data from the China Health and Retirement Longitudinal Study, illustrating its practical utility in identifying influential factors affecting support income for the elderly. Findings indicate that adult children's individual characteristics and emotional comfort are primary factors of support income, and the extent of their impact varies across regions.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 9\",\"pages\":\"1760-1776\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2438799\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2438799","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Integrative analysis of high-dimensional quantile regression with contrasted penalization.
In the era of big data, the simultaneous analysis of multiple high-dimensional, heavy-tailed datasets has become essential. Integrative analysis offers a powerful approach to combine and synthesize information from these various datasets, and often outperforming traditional meta-analysis and single-dataset analysis. In this paper, we introduce a novel high-dimensional integrative quantile regression that can accommodate the complexities inherent in multi-dataset analysis. A contrast penalty that smooths regression coefficients is introduced to account for across-dataset structures and improve variable selection. To ease the computational burden associated with high-dimensional quantile regression, a new algorithm is developed that is effective at computing solution paths and selecting significant variables. Monte Carlo simulations demonstrate its competitive performance. Additionally, the proposed method is applied to data from the China Health and Retirement Longitudinal Study, illustrating its practical utility in identifying influential factors affecting support income for the elderly. Findings indicate that adult children's individual characteristics and emotional comfort are primary factors of support income, and the extent of their impact varies across regions.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.