{"title":"孙德尔本斯河口生态系统浮游细菌群落塑料降解潜力与抗性基因丰度的关联","authors":"Nirupama Saini, Anwesha Ghosh, Punyasloke Bhadury","doi":"10.1093/femsle/fnaf067","DOIUrl":null,"url":null,"abstract":"<p><p>Harnessing microbial capabilities offers a promising and sustainable approach to address the global challenge of plastic waste. However, the potential of mangrove microbiomes to degrade diverse plastic polymers remains largely unexplored. In this metagenomic-based study, surface water microbiomes were analysed from the Indian Sundarbans, part of the world's largest contiguous mangrove ecosystem, revealing 748.21 hits per billion nucleotides associated with plastic-degrading enzymes (PDEs) targeting 17 different polymer types. Of these, 72.9% corresponded to synthetic polymers and 27.1% to natural polymers. The highest number of hits (223) was associated with polyethylene glycol-degrading enzymes, representing 26.7% of the total PDEs hits. Taxonomic analysis revealed Deltaproteobacteria and Gammaproteobacteria as key degraders of diverse synthetic plastic polymers, with Deltaproteobacteria emerging as a previously unreported group. This suggests that surface sediments may serve as reservoirs for novel plastic-degrading microbes. Co-occurrence network analysis indicated possible emerging co-selection or complex associations between PDEs, antibiotic resistance genes (ARGs), and metal resistance genes (MRGs). Notably, zinc resistance genes and aminoglycoside-related ARGs showed more associations with PDEs. While the presence of PDEs offers a promising avenue for bioremediation, their application may be complicated by the concurrent rise of ARGs and MRGs within PDE-harbouring microbes. Thus, it highlights the need for careful assessment when employing microbes for plastic bioremediation.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking plastic degradation potential and resistance gene abundance in bacterioplankton community of the Sundarbans estuarine ecosystem.\",\"authors\":\"Nirupama Saini, Anwesha Ghosh, Punyasloke Bhadury\",\"doi\":\"10.1093/femsle/fnaf067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Harnessing microbial capabilities offers a promising and sustainable approach to address the global challenge of plastic waste. However, the potential of mangrove microbiomes to degrade diverse plastic polymers remains largely unexplored. In this metagenomic-based study, surface water microbiomes were analysed from the Indian Sundarbans, part of the world's largest contiguous mangrove ecosystem, revealing 748.21 hits per billion nucleotides associated with plastic-degrading enzymes (PDEs) targeting 17 different polymer types. Of these, 72.9% corresponded to synthetic polymers and 27.1% to natural polymers. The highest number of hits (223) was associated with polyethylene glycol-degrading enzymes, representing 26.7% of the total PDEs hits. Taxonomic analysis revealed Deltaproteobacteria and Gammaproteobacteria as key degraders of diverse synthetic plastic polymers, with Deltaproteobacteria emerging as a previously unreported group. This suggests that surface sediments may serve as reservoirs for novel plastic-degrading microbes. Co-occurrence network analysis indicated possible emerging co-selection or complex associations between PDEs, antibiotic resistance genes (ARGs), and metal resistance genes (MRGs). Notably, zinc resistance genes and aminoglycoside-related ARGs showed more associations with PDEs. While the presence of PDEs offers a promising avenue for bioremediation, their application may be complicated by the concurrent rise of ARGs and MRGs within PDE-harbouring microbes. Thus, it highlights the need for careful assessment when employing microbes for plastic bioremediation.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnaf067\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Linking plastic degradation potential and resistance gene abundance in bacterioplankton community of the Sundarbans estuarine ecosystem.
Harnessing microbial capabilities offers a promising and sustainable approach to address the global challenge of plastic waste. However, the potential of mangrove microbiomes to degrade diverse plastic polymers remains largely unexplored. In this metagenomic-based study, surface water microbiomes were analysed from the Indian Sundarbans, part of the world's largest contiguous mangrove ecosystem, revealing 748.21 hits per billion nucleotides associated with plastic-degrading enzymes (PDEs) targeting 17 different polymer types. Of these, 72.9% corresponded to synthetic polymers and 27.1% to natural polymers. The highest number of hits (223) was associated with polyethylene glycol-degrading enzymes, representing 26.7% of the total PDEs hits. Taxonomic analysis revealed Deltaproteobacteria and Gammaproteobacteria as key degraders of diverse synthetic plastic polymers, with Deltaproteobacteria emerging as a previously unreported group. This suggests that surface sediments may serve as reservoirs for novel plastic-degrading microbes. Co-occurrence network analysis indicated possible emerging co-selection or complex associations between PDEs, antibiotic resistance genes (ARGs), and metal resistance genes (MRGs). Notably, zinc resistance genes and aminoglycoside-related ARGs showed more associations with PDEs. While the presence of PDEs offers a promising avenue for bioremediation, their application may be complicated by the concurrent rise of ARGs and MRGs within PDE-harbouring microbes. Thus, it highlights the need for careful assessment when employing microbes for plastic bioremediation.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.