使用蒙特卡罗模拟和深度学习的精确单分子光谱成像分析框架。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Hongjing Mao, Yunshu Liu, Obblivignes KanchanadeviVenkataraman, Md Abul Shahid, Caroline Laplante, Dongkuan Xu, Ki-Hee Song, Yang Zhang
{"title":"使用蒙特卡罗模拟和深度学习的精确单分子光谱成像分析框架。","authors":"Hongjing Mao, Yunshu Liu, Obblivignes KanchanadeviVenkataraman, Md Abul Shahid, Caroline Laplante, Dongkuan Xu, Ki-Hee Song, Yang Zhang","doi":"10.1021/acs.analchem.5c01486","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate single-molecule spectral imaging denoising and analysis are essential for advancing high-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. However, a standardized framework for guiding the accurate analysis of single-molecule spectral data remains unavailable. To address this, we developed an analysis framework that generates ground truth (GT) single-molecule spectral imaging data using Monte Carlo simulations, enabling the first supervised learning-based imaging denoising method (referred to as SpecUNet) for single-molecule spectral images. Within this framework, we established eight comprehensive evaluation metrics to systematically compare the performance of SpecUNet against existing imaging analytics using synthetic GT data. We further validated SpecUNet's performance experimentally and demonstrated its capability in accurately characterizing the single-molecule fluorescence spectral heterogeneity of Janelia Fluors. Additionally, we explored its ability to decode the spectral responses of the polarity-sensitive probe Nile Red under varying nanoscale chemical polarities and heterogeneities.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework for Accurate Single-Molecule Spectroscopic Imaging Analyses Using Monte Carlo Simulation and Deep Learning.\",\"authors\":\"Hongjing Mao, Yunshu Liu, Obblivignes KanchanadeviVenkataraman, Md Abul Shahid, Caroline Laplante, Dongkuan Xu, Ki-Hee Song, Yang Zhang\",\"doi\":\"10.1021/acs.analchem.5c01486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate single-molecule spectral imaging denoising and analysis are essential for advancing high-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. However, a standardized framework for guiding the accurate analysis of single-molecule spectral data remains unavailable. To address this, we developed an analysis framework that generates ground truth (GT) single-molecule spectral imaging data using Monte Carlo simulations, enabling the first supervised learning-based imaging denoising method (referred to as SpecUNet) for single-molecule spectral images. Within this framework, we established eight comprehensive evaluation metrics to systematically compare the performance of SpecUNet against existing imaging analytics using synthetic GT data. We further validated SpecUNet's performance experimentally and demonstrated its capability in accurately characterizing the single-molecule fluorescence spectral heterogeneity of Janelia Fluors. Additionally, we explored its ability to decode the spectral responses of the polarity-sensitive probe Nile Red under varying nanoscale chemical polarities and heterogeneities.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c01486\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确的单分子光谱成像去噪和分析是推进高通量单分子光谱学和光谱分辨超分辨显微技术的必要条件。然而,指导精确分析单分子光谱数据的标准化框架仍然不可用。为了解决这个问题,我们开发了一个分析框架,使用蒙特卡罗模拟生成地面真值(GT)单分子光谱成像数据,为单分子光谱图像实现了第一个基于监督学习的成像去噪方法(称为SpecUNet)。在此框架内,我们建立了8个综合评估指标,系统地比较SpecUNet与使用合成GT数据的现有成像分析的性能。我们进一步通过实验验证了SpecUNet的性能,并证明了它能够准确表征紫花紫花的单分子荧光光谱异质性。此外,我们探索了其解码极性敏感探针尼罗红在不同纳米级化学极性和异质性下的光谱响应的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework for Accurate Single-Molecule Spectroscopic Imaging Analyses Using Monte Carlo Simulation and Deep Learning.

Accurate single-molecule spectral imaging denoising and analysis are essential for advancing high-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. However, a standardized framework for guiding the accurate analysis of single-molecule spectral data remains unavailable. To address this, we developed an analysis framework that generates ground truth (GT) single-molecule spectral imaging data using Monte Carlo simulations, enabling the first supervised learning-based imaging denoising method (referred to as SpecUNet) for single-molecule spectral images. Within this framework, we established eight comprehensive evaluation metrics to systematically compare the performance of SpecUNet against existing imaging analytics using synthetic GT data. We further validated SpecUNet's performance experimentally and demonstrated its capability in accurately characterizing the single-molecule fluorescence spectral heterogeneity of Janelia Fluors. Additionally, we explored its ability to decode the spectral responses of the polarity-sensitive probe Nile Red under varying nanoscale chemical polarities and heterogeneities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信