Afaf Saliba, Yidong Chen, Jonathan W Nelson, Abhinav Vetcha, Wei Wei Wang, Li Kang, Nagarjunachary Ragi, Soumya Maity, Hamid Rabb, W Brian Reeves, Kumar Sharma
{"title":"抑制甲基硫腺苷磷酸化酶对实验性急性肾损伤的保护作用。","authors":"Afaf Saliba, Yidong Chen, Jonathan W Nelson, Abhinav Vetcha, Wei Wei Wang, Li Kang, Nagarjunachary Ragi, Soumya Maity, Hamid Rabb, W Brian Reeves, Kumar Sharma","doi":"10.1152/ajprenal.00138.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Methylthioadenosine phosphorylase (MTAP) is a key enzyme in purine metabolism that may influence cellular responses to injury. We evaluated the effects of prophylactic MTAP inhibition in mouse models of ischemia-reperfusion and cisplatin-induced acute kidney injury (AKI). MTAP inhibition was confirmed by accumulation of methylthioadenosine (MTA). Treated mice showed reduced renal injury and decreased tubular damage. Transcriptomic analysis revealed protection from inflammatory and stress pathways, while maintaining oxidative phosphorylation, fatty acid metabolism, and epithelial integrity-related genes. Analysis of human single-cell RNA-seq data from the Kidney Precision Medicine Project indicated that MTAP is highly expressed in kidney injury marker-positive adaptive proximal tubule cells, which display both reparative and maladaptive features during AKI. These findings highlight MTAP as a potential therapeutic target for modulating injury responses in AKI.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of methylthioadenosine phosphorylase protects from experimental acute kidney injury.\",\"authors\":\"Afaf Saliba, Yidong Chen, Jonathan W Nelson, Abhinav Vetcha, Wei Wei Wang, Li Kang, Nagarjunachary Ragi, Soumya Maity, Hamid Rabb, W Brian Reeves, Kumar Sharma\",\"doi\":\"10.1152/ajprenal.00138.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylthioadenosine phosphorylase (MTAP) is a key enzyme in purine metabolism that may influence cellular responses to injury. We evaluated the effects of prophylactic MTAP inhibition in mouse models of ischemia-reperfusion and cisplatin-induced acute kidney injury (AKI). MTAP inhibition was confirmed by accumulation of methylthioadenosine (MTA). Treated mice showed reduced renal injury and decreased tubular damage. Transcriptomic analysis revealed protection from inflammatory and stress pathways, while maintaining oxidative phosphorylation, fatty acid metabolism, and epithelial integrity-related genes. Analysis of human single-cell RNA-seq data from the Kidney Precision Medicine Project indicated that MTAP is highly expressed in kidney injury marker-positive adaptive proximal tubule cells, which display both reparative and maladaptive features during AKI. These findings highlight MTAP as a potential therapeutic target for modulating injury responses in AKI.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00138.2025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00138.2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of methylthioadenosine phosphorylase protects from experimental acute kidney injury.
Methylthioadenosine phosphorylase (MTAP) is a key enzyme in purine metabolism that may influence cellular responses to injury. We evaluated the effects of prophylactic MTAP inhibition in mouse models of ischemia-reperfusion and cisplatin-induced acute kidney injury (AKI). MTAP inhibition was confirmed by accumulation of methylthioadenosine (MTA). Treated mice showed reduced renal injury and decreased tubular damage. Transcriptomic analysis revealed protection from inflammatory and stress pathways, while maintaining oxidative phosphorylation, fatty acid metabolism, and epithelial integrity-related genes. Analysis of human single-cell RNA-seq data from the Kidney Precision Medicine Project indicated that MTAP is highly expressed in kidney injury marker-positive adaptive proximal tubule cells, which display both reparative and maladaptive features during AKI. These findings highlight MTAP as a potential therapeutic target for modulating injury responses in AKI.