{"title":"400 GHz 8×1具有元结构片上天线的发射器和接收器前端","authors":"Bersant Gashi;Sandrine Wagner;Lucas Tetzel;Michael Kuri;Rainer Weber;Philipp Neininger;Axel Tessmann;Arnulf Leuther;Marius Kretschmann;Steffen Wälde;Rüdiger Quay","doi":"10.1109/TTHZ.2025.3554724","DOIUrl":null,"url":null,"abstract":"This article highlights two 8×1 transmitter and receiver front-ends, which are individually composed of two inparallel assembled four-channel submillimeter-wave monolithic integrated circuits (S-MMICs) operating at 400 GHz. These S-MMICs integrate frequency multipliers, mixers, and amplifiers as well as on-chip antennas. They are manufactured on a 35 nm metamorphic high-electron-mobility transistor technology. The included to-the-broadside radiating on-chip antennas allowed for simplified assembly on a printed circuit board upon which two 4×1 transmitter or receiver S-MMICs are placed in parallel. Furthermore, a separate multiplier-by-four is integrated allowing for a low-frequency input drive in the range of 22.50 to 26.25 GHz. The operational frequency range of the front-ends is from 360 to 420 GHz. Both on-wafer and front-end level measurements are shown, including the farfield pattern characterization of the respective metastructure-based on-chip antennas. With all eight channels of the transmitter front-end active, a radiated output power of at least 10 mW is achieved for the frequency range from 390 to 420 GHz setting the state-of-the-art.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 4","pages":"660-671"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938385","citationCount":"0","resultStr":"{\"title\":\"400 GHz 8×1 Transmitter and Receiver Front-Ends With Metastructured On-Chip Antennas\",\"authors\":\"Bersant Gashi;Sandrine Wagner;Lucas Tetzel;Michael Kuri;Rainer Weber;Philipp Neininger;Axel Tessmann;Arnulf Leuther;Marius Kretschmann;Steffen Wälde;Rüdiger Quay\",\"doi\":\"10.1109/TTHZ.2025.3554724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article highlights two 8×1 transmitter and receiver front-ends, which are individually composed of two inparallel assembled four-channel submillimeter-wave monolithic integrated circuits (S-MMICs) operating at 400 GHz. These S-MMICs integrate frequency multipliers, mixers, and amplifiers as well as on-chip antennas. They are manufactured on a 35 nm metamorphic high-electron-mobility transistor technology. The included to-the-broadside radiating on-chip antennas allowed for simplified assembly on a printed circuit board upon which two 4×1 transmitter or receiver S-MMICs are placed in parallel. Furthermore, a separate multiplier-by-four is integrated allowing for a low-frequency input drive in the range of 22.50 to 26.25 GHz. The operational frequency range of the front-ends is from 360 to 420 GHz. Both on-wafer and front-end level measurements are shown, including the farfield pattern characterization of the respective metastructure-based on-chip antennas. With all eight channels of the transmitter front-end active, a radiated output power of at least 10 mW is achieved for the frequency range from 390 to 420 GHz setting the state-of-the-art.\",\"PeriodicalId\":13258,\"journal\":{\"name\":\"IEEE Transactions on Terahertz Science and Technology\",\"volume\":\"15 4\",\"pages\":\"660-671\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938385\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Terahertz Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938385/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938385/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
400 GHz 8×1 Transmitter and Receiver Front-Ends With Metastructured On-Chip Antennas
This article highlights two 8×1 transmitter and receiver front-ends, which are individually composed of two inparallel assembled four-channel submillimeter-wave monolithic integrated circuits (S-MMICs) operating at 400 GHz. These S-MMICs integrate frequency multipliers, mixers, and amplifiers as well as on-chip antennas. They are manufactured on a 35 nm metamorphic high-electron-mobility transistor technology. The included to-the-broadside radiating on-chip antennas allowed for simplified assembly on a printed circuit board upon which two 4×1 transmitter or receiver S-MMICs are placed in parallel. Furthermore, a separate multiplier-by-four is integrated allowing for a low-frequency input drive in the range of 22.50 to 26.25 GHz. The operational frequency range of the front-ends is from 360 to 420 GHz. Both on-wafer and front-end level measurements are shown, including the farfield pattern characterization of the respective metastructure-based on-chip antennas. With all eight channels of the transmitter front-end active, a radiated output power of at least 10 mW is achieved for the frequency range from 390 to 420 GHz setting the state-of-the-art.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.