基于Ruddlesden-Popper Sr2TiO4的双功能光电器件模拟神经形态注意机制

IF 5 2区 物理与天体物理 Q1 OPTICS
Dong-Ping Yang , Kai Yan , Jun Li , Xin-Gui Tang , Ru-Yi Zhong , Zhenhua Tang , Tao Zhang
{"title":"基于Ruddlesden-Popper Sr2TiO4的双功能光电器件模拟神经形态注意机制","authors":"Dong-Ping Yang ,&nbsp;Kai Yan ,&nbsp;Jun Li ,&nbsp;Xin-Gui Tang ,&nbsp;Ru-Yi Zhong ,&nbsp;Zhenhua Tang ,&nbsp;Tao Zhang","doi":"10.1016/j.optlastec.2025.113491","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates Ruddlesden-Popper phase Sr<sub>2</sub>TiO<sub>4</sub>-based optoelectronic synaptic devices through SrO-doped SrTiO<sub>3</sub> thin film preparation and Sr<sub>2</sub>TiO<sub>4</sub>/Nb: SrTiO<sub>3</sub> heterojunction construction. Electrical characterization reveals superior resistive switching performance in RP-phase strontium titanate, exhibiting &gt;10<sup>3</sup> switching ratio over 1000 cycles. The device achieves voltage-dependent dual-mode operation: photodetector functionality at 0 V bias with rapid response (t<sub>rise</sub> = 0.1 s, t<sub>decay</sub> = 0.26 s), and synaptic behavior under forward bias showing prolonged photocurrent decay to 14.7 s. First-principles calculations and absorption spectra analysis elucidate the voltage-regulated operation mechanism. In moving/static target recognition tasks, the optoelectronic hybrid mode achieves higher accuracy than single-signal operation. Through optical/electrical pulse co-regulation, we successfully emulate human brain’s attention matching mechanism in neuromorphic computing. This work advances strontium titanate memristor performance while providing novel material platforms for adaptive photonic synaptic arrays with sense-memory integration.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"192 ","pages":"Article 113491"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional optoelectronic devices based on Ruddlesden-Popper Sr2TiO4 for emulating neuromorphic attention mechanisms\",\"authors\":\"Dong-Ping Yang ,&nbsp;Kai Yan ,&nbsp;Jun Li ,&nbsp;Xin-Gui Tang ,&nbsp;Ru-Yi Zhong ,&nbsp;Zhenhua Tang ,&nbsp;Tao Zhang\",\"doi\":\"10.1016/j.optlastec.2025.113491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study demonstrates Ruddlesden-Popper phase Sr<sub>2</sub>TiO<sub>4</sub>-based optoelectronic synaptic devices through SrO-doped SrTiO<sub>3</sub> thin film preparation and Sr<sub>2</sub>TiO<sub>4</sub>/Nb: SrTiO<sub>3</sub> heterojunction construction. Electrical characterization reveals superior resistive switching performance in RP-phase strontium titanate, exhibiting &gt;10<sup>3</sup> switching ratio over 1000 cycles. The device achieves voltage-dependent dual-mode operation: photodetector functionality at 0 V bias with rapid response (t<sub>rise</sub> = 0.1 s, t<sub>decay</sub> = 0.26 s), and synaptic behavior under forward bias showing prolonged photocurrent decay to 14.7 s. First-principles calculations and absorption spectra analysis elucidate the voltage-regulated operation mechanism. In moving/static target recognition tasks, the optoelectronic hybrid mode achieves higher accuracy than single-signal operation. Through optical/electrical pulse co-regulation, we successfully emulate human brain’s attention matching mechanism in neuromorphic computing. This work advances strontium titanate memristor performance while providing novel material platforms for adaptive photonic synaptic arrays with sense-memory integration.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"192 \",\"pages\":\"Article 113491\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225010825\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225010825","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过sr2tio3掺杂薄膜的制备和Sr2TiO4/Nb: SrTiO3异质结的构建,证明了Ruddlesden-Popper相Sr2TiO4-based光电突触器件。电特性表明rp相钛酸锶具有优越的电阻开关性能,在1000次循环中显示出103的开关比。该器件实现了电压相关的双模工作:光电探测器在0 V偏置下的功能具有快速响应(上升= 0.1 s,衰减= 0.26 s),而在正向偏置下的突触行为显示出延长的光电流衰减至14.7 s。第一性原理计算和吸收光谱分析阐明了电压调节的工作机理。在动/静态目标识别任务中,光电混合模式比单信号操作具有更高的精度。通过光/电脉冲协同调节,我们成功地模拟了人脑在神经形态计算中的注意匹配机制。这项工作提高了钛酸锶忆阻器的性能,同时为具有感觉记忆集成的自适应光子突触阵列提供了新的材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional optoelectronic devices based on Ruddlesden-Popper Sr2TiO4 for emulating neuromorphic attention mechanisms
This study demonstrates Ruddlesden-Popper phase Sr2TiO4-based optoelectronic synaptic devices through SrO-doped SrTiO3 thin film preparation and Sr2TiO4/Nb: SrTiO3 heterojunction construction. Electrical characterization reveals superior resistive switching performance in RP-phase strontium titanate, exhibiting >103 switching ratio over 1000 cycles. The device achieves voltage-dependent dual-mode operation: photodetector functionality at 0 V bias with rapid response (trise = 0.1 s, tdecay = 0.26 s), and synaptic behavior under forward bias showing prolonged photocurrent decay to 14.7 s. First-principles calculations and absorption spectra analysis elucidate the voltage-regulated operation mechanism. In moving/static target recognition tasks, the optoelectronic hybrid mode achieves higher accuracy than single-signal operation. Through optical/electrical pulse co-regulation, we successfully emulate human brain’s attention matching mechanism in neuromorphic computing. This work advances strontium titanate memristor performance while providing novel material platforms for adaptive photonic synaptic arrays with sense-memory integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信