基于多态平衡电位模型的阴极反应动态氧-氧化还原演化

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nian Ran, Chengbo Li, Qinwen Cui, Dezhen Xue, Jianjun Liu
{"title":"基于多态平衡电位模型的阴极反应动态氧-氧化还原演化","authors":"Nian Ran, Chengbo Li, Qinwen Cui, Dezhen Xue, Jianjun Liu","doi":"10.1038/s41524-025-01714-2","DOIUrl":null,"url":null,"abstract":"<p>Understanding the mechanisms of oxygen anion electrochemical reactions within crystals has long perplexed electrochemical scientists and hindered the structural design and composition optimization of Li-ion cathode materials. Machine learning interatomic potentials (MLIP) are transforming the landscape by enabling high-accuracy atomistic modeling on a large scale in materials science and chemistry. The diversity and comprehensiveness of the dataset are fundamental to building a high-accuracy MLIP. Here, we constructed a Li<sub>1.2–<i>x</i></sub>Mn<sub>0.6</sub>Ni<sub>0.2</sub>O<sub>2</sub> (<i>x</i> = 0–1.04) dataset that includes over 15,000 chemical non-equilibrium and chemical equilibrium structures. Using this dataset, we trained an MLIP model (multistate equilibrium potential, named MSEP) with test accuracies of 0.008 eV/atom and 0.153 eV/Å for energy and force, respectively. Through MSEP-MD simulations, we identify a kinetically viable O-redox mechanism in which the formation of transient interlayer O<sub>2</sub><sup>2</sup><sup>−</sup>, O<sub>2</sub><sup>−</sup> or O<sub>3</sub><sup>−</sup> intermediates drives out-of-plane Mn and Ni migration, resulting in O<sub>2</sub> molecules forming within the bulk structure. O<sub>3</sub><sup>−</sup> intermediates have a certain ability to capture O<sub>2</sub>, which may help alleviate the formation of lattice O<sub>2</sub>.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"5 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic oxygen-redox evolution of cathode reactions based on the multistate equilibrium potential model\",\"authors\":\"Nian Ran, Chengbo Li, Qinwen Cui, Dezhen Xue, Jianjun Liu\",\"doi\":\"10.1038/s41524-025-01714-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the mechanisms of oxygen anion electrochemical reactions within crystals has long perplexed electrochemical scientists and hindered the structural design and composition optimization of Li-ion cathode materials. Machine learning interatomic potentials (MLIP) are transforming the landscape by enabling high-accuracy atomistic modeling on a large scale in materials science and chemistry. The diversity and comprehensiveness of the dataset are fundamental to building a high-accuracy MLIP. Here, we constructed a Li<sub>1.2–<i>x</i></sub>Mn<sub>0.6</sub>Ni<sub>0.2</sub>O<sub>2</sub> (<i>x</i> = 0–1.04) dataset that includes over 15,000 chemical non-equilibrium and chemical equilibrium structures. Using this dataset, we trained an MLIP model (multistate equilibrium potential, named MSEP) with test accuracies of 0.008 eV/atom and 0.153 eV/Å for energy and force, respectively. Through MSEP-MD simulations, we identify a kinetically viable O-redox mechanism in which the formation of transient interlayer O<sub>2</sub><sup>2</sup><sup>−</sup>, O<sub>2</sub><sup>−</sup> or O<sub>3</sub><sup>−</sup> intermediates drives out-of-plane Mn and Ni migration, resulting in O<sub>2</sub> molecules forming within the bulk structure. O<sub>3</sub><sup>−</sup> intermediates have a certain ability to capture O<sub>2</sub>, which may help alleviate the formation of lattice O<sub>2</sub>.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01714-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01714-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,了解晶体内氧阴离子电化学反应的机理一直困扰着电化学科学家,并阻碍了锂离子正极材料的结构设计和成分优化。机器学习原子间势(MLIP)通过在材料科学和化学领域实现大规模的高精度原子建模,正在改变着格局。数据集的多样性和全面性是构建高精度MLIP的基础。在这里,我们构建了Li1.2-xMn0.6Ni0.2O2 (x = 0-1.04)数据集,其中包括超过15,000个化学非平衡和化学平衡结构。利用该数据集,我们训练了一个MLIP(多态平衡势,MSEP)模型,能量和力的测试精度分别为0.008 eV/原子和0.153 eV/Å。通过MSEP-MD模拟,我们确定了一种动力学上可行的o -氧化还原机制,其中瞬态层间O22−,O2−或O3−中间体的形成驱动了面外Mn和Ni迁移,导致O2分子在体结构内形成。O3−中间体具有一定的捕获O2的能力,这可能有助于减缓晶格O2的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic oxygen-redox evolution of cathode reactions based on the multistate equilibrium potential model

Dynamic oxygen-redox evolution of cathode reactions based on the multistate equilibrium potential model

Understanding the mechanisms of oxygen anion electrochemical reactions within crystals has long perplexed electrochemical scientists and hindered the structural design and composition optimization of Li-ion cathode materials. Machine learning interatomic potentials (MLIP) are transforming the landscape by enabling high-accuracy atomistic modeling on a large scale in materials science and chemistry. The diversity and comprehensiveness of the dataset are fundamental to building a high-accuracy MLIP. Here, we constructed a Li1.2–xMn0.6Ni0.2O2 (x = 0–1.04) dataset that includes over 15,000 chemical non-equilibrium and chemical equilibrium structures. Using this dataset, we trained an MLIP model (multistate equilibrium potential, named MSEP) with test accuracies of 0.008 eV/atom and 0.153 eV/Å for energy and force, respectively. Through MSEP-MD simulations, we identify a kinetically viable O-redox mechanism in which the formation of transient interlayer O22, O2 or O3 intermediates drives out-of-plane Mn and Ni migration, resulting in O2 molecules forming within the bulk structure. O3 intermediates have a certain ability to capture O2, which may help alleviate the formation of lattice O2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信