具有垂直磁各向异性的磁补偿纳米薄镓取代钇铁石榴石(Ga:YIG)薄膜

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Carsten Dubs, Oleksii Surzhenko
{"title":"具有垂直磁各向异性的磁补偿纳米薄镓取代钇铁石榴石(Ga:YIG)薄膜","authors":"Carsten Dubs, Oleksii Surzhenko","doi":"10.1002/aelm.202500232","DOIUrl":null,"url":null,"abstract":"Magnetically full or partially compensated insulating ferrimagnets with perpendicular magnetic anisotropy (PMA) offer valuable insights into fundamental spin‐wave physics and high‐speed magnonic applications. This study reports on key magnetic parameters of nanometer‐thin Ga substituted yttrium iron garnet (Ga:YIG) films with saturation magnetization 4π<jats:italic>M</jats:italic><jats:sub>s</jats:sub> below 200 G. Vibrating sample magnetometry (VSM) is used to determine the remanent magnetization 4π<jats:italic>M</jats:italic><jats:sub>r</jats:sub> and the polar orientation of the magnetic easy axis in samples with very low net magnetic moments. Additionally, the temperature dependence of the net magnetization of magnetically compensated Ga:YIG films, with compensation points <jats:italic>T</jats:italic><jats:sub>comp</jats:sub> near room temperature, is investigated. For films with remanent magnetization values below 60 G at room temperature, the compensation points <jats:italic>T</jats:italic><jats:sub>comp</jats:sub> are determined and correlated with their Curie temperatures <jats:italic>T</jats:italic><jats:sub>C</jats:sub>. Ferromagnetic resonance (FMR) measurements at 6.5 GHz show that the FMR linewidths Δ<jats:italic>H</jats:italic><jats:sub>FWHM</jats:sub> correlate inversely proportional with the remanent magnetization. The reduced saturation magnetization in the Ga:YIG films leads to a significant increase in the effective magnetization 4π<jats:italic>M</jats:italic><jats:sub>eff</jats:sub> and thus enables films with robust PMA. This opens up a new parameter space for the fine‐tuning of potential magnonic spin‐wave devices on commonly used GGG substrates.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"28 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetically Compensated Nanometer‐Thin Ga‐Substituted Yttrium Iron Garnet (Ga:YIG) Films with Robust Perpendicular Magnetic Anisotropy\",\"authors\":\"Carsten Dubs, Oleksii Surzhenko\",\"doi\":\"10.1002/aelm.202500232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetically full or partially compensated insulating ferrimagnets with perpendicular magnetic anisotropy (PMA) offer valuable insights into fundamental spin‐wave physics and high‐speed magnonic applications. This study reports on key magnetic parameters of nanometer‐thin Ga substituted yttrium iron garnet (Ga:YIG) films with saturation magnetization 4π<jats:italic>M</jats:italic><jats:sub>s</jats:sub> below 200 G. Vibrating sample magnetometry (VSM) is used to determine the remanent magnetization 4π<jats:italic>M</jats:italic><jats:sub>r</jats:sub> and the polar orientation of the magnetic easy axis in samples with very low net magnetic moments. Additionally, the temperature dependence of the net magnetization of magnetically compensated Ga:YIG films, with compensation points <jats:italic>T</jats:italic><jats:sub>comp</jats:sub> near room temperature, is investigated. For films with remanent magnetization values below 60 G at room temperature, the compensation points <jats:italic>T</jats:italic><jats:sub>comp</jats:sub> are determined and correlated with their Curie temperatures <jats:italic>T</jats:italic><jats:sub>C</jats:sub>. Ferromagnetic resonance (FMR) measurements at 6.5 GHz show that the FMR linewidths Δ<jats:italic>H</jats:italic><jats:sub>FWHM</jats:sub> correlate inversely proportional with the remanent magnetization. The reduced saturation magnetization in the Ga:YIG films leads to a significant increase in the effective magnetization 4π<jats:italic>M</jats:italic><jats:sub>eff</jats:sub> and thus enables films with robust PMA. This opens up a new parameter space for the fine‐tuning of potential magnonic spin‐wave devices on commonly used GGG substrates.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500232\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有垂直磁各向异性(PMA)的完全或部分补偿的绝缘铁磁体为基本自旋波物理和高速磁应用提供了有价值的见解。本文报道了饱和磁化强度在200 g以下为4πMs的纳米薄镓取代钇铁石榴石(Ga:YIG)薄膜的关键磁性参数。采用振动样品磁强计(VSM)测定了极低净磁矩样品的剩余磁化强度4πMr和磁易轴的极性取向。此外,还研究了在室温附近补偿点为Tcomp的磁补偿Ga:YIG薄膜的净磁化强度与温度的关系。对于室温下剩余磁化强度低于60g的薄膜,确定了补偿点Tcomp,并将其与居里温度TC进行了关联。在6.5 GHz下的铁磁共振(FMR)测量表明,FMR线宽ΔHFWHM与剩余磁化强度成反比。Ga:YIG薄膜的饱和磁化强度降低,导致有效磁化强度4πMeff显著增加,从而使薄膜具有强大的PMA。这为常用GGG衬底上的势磁自旋波器件的微调开辟了一个新的参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetically Compensated Nanometer‐Thin Ga‐Substituted Yttrium Iron Garnet (Ga:YIG) Films with Robust Perpendicular Magnetic Anisotropy
Magnetically full or partially compensated insulating ferrimagnets with perpendicular magnetic anisotropy (PMA) offer valuable insights into fundamental spin‐wave physics and high‐speed magnonic applications. This study reports on key magnetic parameters of nanometer‐thin Ga substituted yttrium iron garnet (Ga:YIG) films with saturation magnetization 4πMs below 200 G. Vibrating sample magnetometry (VSM) is used to determine the remanent magnetization 4πMr and the polar orientation of the magnetic easy axis in samples with very low net magnetic moments. Additionally, the temperature dependence of the net magnetization of magnetically compensated Ga:YIG films, with compensation points Tcomp near room temperature, is investigated. For films with remanent magnetization values below 60 G at room temperature, the compensation points Tcomp are determined and correlated with their Curie temperatures TC. Ferromagnetic resonance (FMR) measurements at 6.5 GHz show that the FMR linewidths ΔHFWHM correlate inversely proportional with the remanent magnetization. The reduced saturation magnetization in the Ga:YIG films leads to a significant increase in the effective magnetization 4πMeff and thus enables films with robust PMA. This opens up a new parameter space for the fine‐tuning of potential magnonic spin‐wave devices on commonly used GGG substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信