患者特异性建模的心血管集总参数模型的敏感性分析和优化。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Siti Munirah Muhammad Ali, Wahbi El-Bouri, Wan Naimah Wan Ab Naim, Mohd Jamil Mohamed Mokhtarudin
{"title":"患者特异性建模的心血管集总参数模型的敏感性分析和优化。","authors":"Siti Munirah Muhammad Ali, Wahbi El-Bouri, Wan Naimah Wan Ab Naim, Mohd Jamil Mohamed Mokhtarudin","doi":"10.1080/10255842.2025.2525980","DOIUrl":null,"url":null,"abstract":"<p><p>Parameter estimation poses a significant challenge in developing patient-specific cardiovascular models. This study presents a framework that enhances parameter estimation in lumped parameter cardiovascular models by combining sensitivity analysis for parameter selection with multi-objective genetic algorithm optimization. Four key parameters were identified as the most influential and subsequently optimized. Model outputs, specifically mean arterial pressure (MAP), were validated against clinical values from a public database. The optimized model's MAP demonstrated a strong correlation with clinical MAP (<i>r</i> = 0.99997, <i>p</i> < 0.001), and a t-test analysis (<i>p</i> = 0.752) confirmed statistical equivalence with clinical data. This approach highlights the potential of sensitivity analysis and genetic algorithms to improve accuracy in patient-specific cardiovascular modelling.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-18"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis and optimization of a cardiovascular lumped parameter model for patient-specific modelling.\",\"authors\":\"Siti Munirah Muhammad Ali, Wahbi El-Bouri, Wan Naimah Wan Ab Naim, Mohd Jamil Mohamed Mokhtarudin\",\"doi\":\"10.1080/10255842.2025.2525980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parameter estimation poses a significant challenge in developing patient-specific cardiovascular models. This study presents a framework that enhances parameter estimation in lumped parameter cardiovascular models by combining sensitivity analysis for parameter selection with multi-objective genetic algorithm optimization. Four key parameters were identified as the most influential and subsequently optimized. Model outputs, specifically mean arterial pressure (MAP), were validated against clinical values from a public database. The optimized model's MAP demonstrated a strong correlation with clinical MAP (<i>r</i> = 0.99997, <i>p</i> < 0.001), and a t-test analysis (<i>p</i> = 0.752) confirmed statistical equivalence with clinical data. This approach highlights the potential of sensitivity analysis and genetic algorithms to improve accuracy in patient-specific cardiovascular modelling.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2525980\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2525980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

参数估计对建立患者特异性心血管模型提出了重大挑战。本研究提出了一种将参数选择敏感性分析与多目标遗传算法优化相结合的框架,提高了集总参数心血管模型的参数估计能力。确定了四个最具影响力的关键参数,并对其进行了优化。模型输出,特别是平均动脉压(MAP),与来自公共数据库的临床值进行验证。优化模型的MAP与临床MAP有较强的相关性(r = 0.99997, p p = 0.752),与临床数据具有统计学上的等效性。这种方法强调了敏感性分析和遗传算法的潜力,以提高患者特异性心血管建模的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis and optimization of a cardiovascular lumped parameter model for patient-specific modelling.

Parameter estimation poses a significant challenge in developing patient-specific cardiovascular models. This study presents a framework that enhances parameter estimation in lumped parameter cardiovascular models by combining sensitivity analysis for parameter selection with multi-objective genetic algorithm optimization. Four key parameters were identified as the most influential and subsequently optimized. Model outputs, specifically mean arterial pressure (MAP), were validated against clinical values from a public database. The optimized model's MAP demonstrated a strong correlation with clinical MAP (r = 0.99997, p < 0.001), and a t-test analysis (p = 0.752) confirmed statistical equivalence with clinical data. This approach highlights the potential of sensitivity analysis and genetic algorithms to improve accuracy in patient-specific cardiovascular modelling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信