基于贝叶斯正则化和标注的认知综合分析(BRAINIAC)

IF 4.9 2区 医学 Q1 NEUROSCIENCES
Rong W. Zablocki , Bohan Xu , Chun-Chieh Fan , Wesley K. Thompson
{"title":"基于贝叶斯正则化和标注的认知综合分析(BRAINIAC)","authors":"Rong W. Zablocki ,&nbsp;Bohan Xu ,&nbsp;Chun-Chieh Fan ,&nbsp;Wesley K. Thompson","doi":"10.1016/j.dcn.2025.101569","DOIUrl":null,"url":null,"abstract":"<div><div>We present the novel Bayesian Regularized and Annotation-Informed Integrative Analysis of Cognition (BRAINIAC) model. BRAINIAC allows for estimation of total variance explained by all features for a given cognitive phenotype, as well as a principled assessment of the impact of annotations on relative enrichment of predictive features compared to others in terms of variance explained, without relying on a potentially unrealistic assumption of sparsity of brain–behavior associations. We validate BRAINIAC in Monte Carlo simulation studies. In real data analyses, we train the BRAINIAC model on resting state functional magnetic resonance imaging (rsMRI) and neuropsychiatric data from the Adolescent Brain Cognitive Development (ABCD) Study and use the trained model in an out-of-study application to harmonized resting-state data from the Human Connectome Project Development (HCP-D), demonstrating a substantial improvement in out-of-study predictive power by incorporating relevant annotations into the BRAINIAC model.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"74 ","pages":"Article 101569"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Regularized and Annotation-Informed Integrative Analysis of Cognition (BRAINIAC)\",\"authors\":\"Rong W. Zablocki ,&nbsp;Bohan Xu ,&nbsp;Chun-Chieh Fan ,&nbsp;Wesley K. Thompson\",\"doi\":\"10.1016/j.dcn.2025.101569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present the novel Bayesian Regularized and Annotation-Informed Integrative Analysis of Cognition (BRAINIAC) model. BRAINIAC allows for estimation of total variance explained by all features for a given cognitive phenotype, as well as a principled assessment of the impact of annotations on relative enrichment of predictive features compared to others in terms of variance explained, without relying on a potentially unrealistic assumption of sparsity of brain–behavior associations. We validate BRAINIAC in Monte Carlo simulation studies. In real data analyses, we train the BRAINIAC model on resting state functional magnetic resonance imaging (rsMRI) and neuropsychiatric data from the Adolescent Brain Cognitive Development (ABCD) Study and use the trained model in an out-of-study application to harmonized resting-state data from the Human Connectome Project Development (HCP-D), demonstrating a substantial improvement in out-of-study predictive power by incorporating relevant annotations into the BRAINIAC model.</div></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"74 \",\"pages\":\"Article 101569\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929325000647\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000647","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的贝叶斯正则化和标注信息的认知综合分析(BRAINIAC)模型。BRAINIAC允许对给定认知表型的所有特征解释的总方差进行估计,以及对注释对预测特征相对丰富程度的影响进行原则评估,而不依赖于对大脑行为关联的稀疏性的潜在不切实际的假设。我们在蒙特卡洛模拟研究中验证了BRAINIAC。在实际数据分析中,我们对BRAINIAC模型进行了静息状态功能磁共振成像(rsMRI)和来自青少年大脑认知发展(ABCD)研究的神经精神病学数据的训练,并将训练后的模型用于一个非学习应用中,以协调来自人类连接组项目发展(HCP-D)的静息状态数据,通过将相关注释纳入BRAINIAC模型,证明了在非学习状态下预测能力的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Regularized and Annotation-Informed Integrative Analysis of Cognition (BRAINIAC)
We present the novel Bayesian Regularized and Annotation-Informed Integrative Analysis of Cognition (BRAINIAC) model. BRAINIAC allows for estimation of total variance explained by all features for a given cognitive phenotype, as well as a principled assessment of the impact of annotations on relative enrichment of predictive features compared to others in terms of variance explained, without relying on a potentially unrealistic assumption of sparsity of brain–behavior associations. We validate BRAINIAC in Monte Carlo simulation studies. In real data analyses, we train the BRAINIAC model on resting state functional magnetic resonance imaging (rsMRI) and neuropsychiatric data from the Adolescent Brain Cognitive Development (ABCD) Study and use the trained model in an out-of-study application to harmonized resting-state data from the Human Connectome Project Development (HCP-D), demonstrating a substantial improvement in out-of-study predictive power by incorporating relevant annotations into the BRAINIAC model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信