Dennis Possart, Leonid Mill, Florian Vollnhals, Tor Hildebrand, Peter Suter, Mathis Hoffmann, Jonas Utz, Daniel Augsburger, Mareike Thies, Mingxuan Gu, Fabian Wagner, George Sarau, Silke Christiansen, Katharina Breininger
{"title":"用可微分渲染和生成建模解决纳米材料分割网络中的数据稀缺性","authors":"Dennis Possart, Leonid Mill, Florian Vollnhals, Tor Hildebrand, Peter Suter, Mathis Hoffmann, Jonas Utz, Daniel Augsburger, Mareike Thies, Mingxuan Gu, Fabian Wagner, George Sarau, Silke Christiansen, Katharina Breininger","doi":"10.1038/s41524-025-01702-6","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their technological, biological, and environmental applications. Accurate quantification of these materials is essential for advancing research. Deep learning segmentation networks offer precise, automated analysis, but their effectiveness depends on representative annotated datasets, which are difficult to obtain due to the high cost and manual effort required for imaging and annotation. To address this, we present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN optimizes rendering parameters to produce realistic, annotated images from non-annotated real microscopy images, reducing manual effort and improving segmentation performance compared to existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO<sub>2</sub>), silicon dioxide (SiO<sub>2</sub>), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"47 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing data scarcity in nanomaterial segmentation networks with differentiable rendering and generative modeling\",\"authors\":\"Dennis Possart, Leonid Mill, Florian Vollnhals, Tor Hildebrand, Peter Suter, Mathis Hoffmann, Jonas Utz, Daniel Augsburger, Mareike Thies, Mingxuan Gu, Fabian Wagner, George Sarau, Silke Christiansen, Katharina Breininger\",\"doi\":\"10.1038/s41524-025-01702-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their technological, biological, and environmental applications. Accurate quantification of these materials is essential for advancing research. Deep learning segmentation networks offer precise, automated analysis, but their effectiveness depends on representative annotated datasets, which are difficult to obtain due to the high cost and manual effort required for imaging and annotation. To address this, we present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN optimizes rendering parameters to produce realistic, annotated images from non-annotated real microscopy images, reducing manual effort and improving segmentation performance compared to existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO<sub>2</sub>), silicon dioxide (SiO<sub>2</sub>), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01702-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01702-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Addressing data scarcity in nanomaterial segmentation networks with differentiable rendering and generative modeling
Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their technological, biological, and environmental applications. Accurate quantification of these materials is essential for advancing research. Deep learning segmentation networks offer precise, automated analysis, but their effectiveness depends on representative annotated datasets, which are difficult to obtain due to the high cost and manual effort required for imaging and annotation. To address this, we present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN optimizes rendering parameters to produce realistic, annotated images from non-annotated real microscopy images, reducing manual effort and improving segmentation performance compared to existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO2), silicon dioxide (SiO2), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.