Yoshifumi Amamoto, Chie Koganemaru, Ken Kojio, Atsushi Takahara, Sayoko Yamamoto, Kazuki Okazawa, Yuta Tsuji, Toshimitsu Aritake, Kei Terayama
{"title":"一种设计和理解坚韧、可降解聚酰胺的机器学习方法","authors":"Yoshifumi Amamoto, Chie Koganemaru, Ken Kojio, Atsushi Takahara, Sayoko Yamamoto, Kazuki Okazawa, Yuta Tsuji, Toshimitsu Aritake, Kei Terayama","doi":"10.1038/s41524-025-01696-1","DOIUrl":null,"url":null,"abstract":"<p>The development of environmentally friendly plastics has received renewed attention for a sustainable society. Although the trade-off between toughness and degradability is a common challenge in biodegradable polymers, the design of biodegradable polymers to overcome these issues is often difficult. In this study, we demonstrated that machine learning techniques can contribute to the development of multiblock polyamides composed of Nylon6 and α-amino acid segments that are mechanically tough and degradable. Multi-objective optimization based on Gaussian process regression for the degradation rate, strain at break, and Young’s modulus (the last two parameters correspond to toughness) suggested appropriate α-amino acid sequences for polyamides endowed with both properties. Ridge regression revealed that the physical factors associated with the sequences, as well as the higher-order multiblock-derived structures (such as the crystal lattice structure, melting points, and hydrogen bonding), were essential for endowing these polymers with satisfactory properties among the multimodal measurement/calculation data. Our method provides a useful approach for designing and understanding environment-friendly plastics and other materials with multiple properties based on machine learning techniques.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"19 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to designing and understanding tough, degradable polyamides\",\"authors\":\"Yoshifumi Amamoto, Chie Koganemaru, Ken Kojio, Atsushi Takahara, Sayoko Yamamoto, Kazuki Okazawa, Yuta Tsuji, Toshimitsu Aritake, Kei Terayama\",\"doi\":\"10.1038/s41524-025-01696-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of environmentally friendly plastics has received renewed attention for a sustainable society. Although the trade-off between toughness and degradability is a common challenge in biodegradable polymers, the design of biodegradable polymers to overcome these issues is often difficult. In this study, we demonstrated that machine learning techniques can contribute to the development of multiblock polyamides composed of Nylon6 and α-amino acid segments that are mechanically tough and degradable. Multi-objective optimization based on Gaussian process regression for the degradation rate, strain at break, and Young’s modulus (the last two parameters correspond to toughness) suggested appropriate α-amino acid sequences for polyamides endowed with both properties. Ridge regression revealed that the physical factors associated with the sequences, as well as the higher-order multiblock-derived structures (such as the crystal lattice structure, melting points, and hydrogen bonding), were essential for endowing these polymers with satisfactory properties among the multimodal measurement/calculation data. Our method provides a useful approach for designing and understanding environment-friendly plastics and other materials with multiple properties based on machine learning techniques.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01696-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01696-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A machine learning approach to designing and understanding tough, degradable polyamides
The development of environmentally friendly plastics has received renewed attention for a sustainable society. Although the trade-off between toughness and degradability is a common challenge in biodegradable polymers, the design of biodegradable polymers to overcome these issues is often difficult. In this study, we demonstrated that machine learning techniques can contribute to the development of multiblock polyamides composed of Nylon6 and α-amino acid segments that are mechanically tough and degradable. Multi-objective optimization based on Gaussian process regression for the degradation rate, strain at break, and Young’s modulus (the last two parameters correspond to toughness) suggested appropriate α-amino acid sequences for polyamides endowed with both properties. Ridge regression revealed that the physical factors associated with the sequences, as well as the higher-order multiblock-derived structures (such as the crystal lattice structure, melting points, and hydrogen bonding), were essential for endowing these polymers with satisfactory properties among the multimodal measurement/calculation data. Our method provides a useful approach for designing and understanding environment-friendly plastics and other materials with multiple properties based on machine learning techniques.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.