Adeeb Hayyan, Abdulaziz Hatem Alahmadi, Khalid M. Abed, Yee-Sern Ng, Jehad Saleh, Yousef Mohammed Alanazi, Syahrinaz Rahim, Mahar Diana Hamid, Mohd Ali Hashim, Bhaskar Sen Gupta
{"title":"一种用于提取粗生物柴油中甘油的新型深共熔溶剂基液体膜","authors":"Adeeb Hayyan, Abdulaziz Hatem Alahmadi, Khalid M. Abed, Yee-Sern Ng, Jehad Saleh, Yousef Mohammed Alanazi, Syahrinaz Rahim, Mahar Diana Hamid, Mohd Ali Hashim, Bhaskar Sen Gupta","doi":"10.1002/aocs.12951","DOIUrl":null,"url":null,"abstract":"<p>This study used deep eutectic solvent (DES) as the liquid membrane in a bulk liquid membrane system (BLM) to remove glycerol from waste cooking oil-based biodiesel. The DES was prepared from choline chloride and tetraethylene glycol at a molar ratio of 1:5. Diethyl ether was employed as a novel strip phase for the glycerol in BLM. The effects of the DES: biodiesel ratio, stirring speed, and extraction time on the extraction and stripping efficiencies were investigated. The results showed that BLM could give better glycerol removal from biodiesel than mechanical shaking. Increasing the DES: biodiesel ratio, stirring speed, and extraction time can enhance glycerol removal from the feed phase, achieving purified biodiesel that complies with biodiesel international standards. The purified biodiesel met the ASTM D6751 and EN 14214 international standards requirement for glycerol content of less than 0.24% under the following conditions of DES: biodiesel ratio of 1:1, stirring speed of 200 rpm, and extraction time of 240 min. The transport mechanisms of glycerol in the system were postulated based on two consecutive irreversible first-order extraction and stripping. The kinetic study shows that the extraction and stripping processes in this system could be explained by a first-order kinetic model, as the experimental results fitted into the model showed <i>R</i><sup>2</sup> values of 0.98, 0.97, and 0.97 for the feed phase, membrane phase, and strip phase, respectively. The extraction and stripping rate constants (k<sub>1</sub> and k<sub>2</sub>) were 0.0031 and 0.0019 min<sup>−1</sup>, respectively.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 7","pages":"1113-1120"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep eutectic solvent-based liquid membrane for the extraction of glycerol from crude biodiesel\",\"authors\":\"Adeeb Hayyan, Abdulaziz Hatem Alahmadi, Khalid M. Abed, Yee-Sern Ng, Jehad Saleh, Yousef Mohammed Alanazi, Syahrinaz Rahim, Mahar Diana Hamid, Mohd Ali Hashim, Bhaskar Sen Gupta\",\"doi\":\"10.1002/aocs.12951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study used deep eutectic solvent (DES) as the liquid membrane in a bulk liquid membrane system (BLM) to remove glycerol from waste cooking oil-based biodiesel. The DES was prepared from choline chloride and tetraethylene glycol at a molar ratio of 1:5. Diethyl ether was employed as a novel strip phase for the glycerol in BLM. The effects of the DES: biodiesel ratio, stirring speed, and extraction time on the extraction and stripping efficiencies were investigated. The results showed that BLM could give better glycerol removal from biodiesel than mechanical shaking. Increasing the DES: biodiesel ratio, stirring speed, and extraction time can enhance glycerol removal from the feed phase, achieving purified biodiesel that complies with biodiesel international standards. The purified biodiesel met the ASTM D6751 and EN 14214 international standards requirement for glycerol content of less than 0.24% under the following conditions of DES: biodiesel ratio of 1:1, stirring speed of 200 rpm, and extraction time of 240 min. The transport mechanisms of glycerol in the system were postulated based on two consecutive irreversible first-order extraction and stripping. The kinetic study shows that the extraction and stripping processes in this system could be explained by a first-order kinetic model, as the experimental results fitted into the model showed <i>R</i><sup>2</sup> values of 0.98, 0.97, and 0.97 for the feed phase, membrane phase, and strip phase, respectively. The extraction and stripping rate constants (k<sub>1</sub> and k<sub>2</sub>) were 0.0031 and 0.0019 min<sup>−1</sup>, respectively.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"102 7\",\"pages\":\"1113-1120\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12951\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12951","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A novel deep eutectic solvent-based liquid membrane for the extraction of glycerol from crude biodiesel
This study used deep eutectic solvent (DES) as the liquid membrane in a bulk liquid membrane system (BLM) to remove glycerol from waste cooking oil-based biodiesel. The DES was prepared from choline chloride and tetraethylene glycol at a molar ratio of 1:5. Diethyl ether was employed as a novel strip phase for the glycerol in BLM. The effects of the DES: biodiesel ratio, stirring speed, and extraction time on the extraction and stripping efficiencies were investigated. The results showed that BLM could give better glycerol removal from biodiesel than mechanical shaking. Increasing the DES: biodiesel ratio, stirring speed, and extraction time can enhance glycerol removal from the feed phase, achieving purified biodiesel that complies with biodiesel international standards. The purified biodiesel met the ASTM D6751 and EN 14214 international standards requirement for glycerol content of less than 0.24% under the following conditions of DES: biodiesel ratio of 1:1, stirring speed of 200 rpm, and extraction time of 240 min. The transport mechanisms of glycerol in the system were postulated based on two consecutive irreversible first-order extraction and stripping. The kinetic study shows that the extraction and stripping processes in this system could be explained by a first-order kinetic model, as the experimental results fitted into the model showed R2 values of 0.98, 0.97, and 0.97 for the feed phase, membrane phase, and strip phase, respectively. The extraction and stripping rate constants (k1 and k2) were 0.0031 and 0.0019 min−1, respectively.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.