{"title":"具有频率特定波速控制的毫米波驻波振荡器显示f级效应","authors":"Wei-Yu Lin;Jun-Chau Chien","doi":"10.1109/LSSC.2025.3578942","DOIUrl":null,"url":null,"abstract":"Implementing dual-resonance class-F oscillators with transformer feedback beyond 60 GHz poses significant challenges due to the limited third-harmonic tank impedance when using small coils with low coupling factors. To address these limitations and leverage the phase noise advantages of class-F operation, this letter introduces a standing-wave oscillator (SWO) topology featuring an on-chip multiband transmission-line (t-line) resonator loaded with harmonically tuned open stubs. The proposed design enhances third-harmonic resonance while facilitating precise alignment of the oscillation frequencies. Three voltage-controlled oscillators (VCOs) were implemented using TSMC’s 65-nm LP technology, demonstrating that the proposed class-F half-wavelength SWO achieves phase noise improvements of 3.1 and 6.4 dB at a 1-MHz offset compared to conventional SWO and transformer-based class-F VCO, respectively.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"181-184"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Millimeter-Wave Standing-Wave Oscillator With Frequency-Specific Wave-Velocity Control Demonstrating Class-F Effects\",\"authors\":\"Wei-Yu Lin;Jun-Chau Chien\",\"doi\":\"10.1109/LSSC.2025.3578942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing dual-resonance class-F oscillators with transformer feedback beyond 60 GHz poses significant challenges due to the limited third-harmonic tank impedance when using small coils with low coupling factors. To address these limitations and leverage the phase noise advantages of class-F operation, this letter introduces a standing-wave oscillator (SWO) topology featuring an on-chip multiband transmission-line (t-line) resonator loaded with harmonically tuned open stubs. The proposed design enhances third-harmonic resonance while facilitating precise alignment of the oscillation frequencies. Three voltage-controlled oscillators (VCOs) were implemented using TSMC’s 65-nm LP technology, demonstrating that the proposed class-F half-wavelength SWO achieves phase noise improvements of 3.1 and 6.4 dB at a 1-MHz offset compared to conventional SWO and transformer-based class-F VCO, respectively.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"181-184\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030857/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11030857/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Millimeter-Wave Standing-Wave Oscillator With Frequency-Specific Wave-Velocity Control Demonstrating Class-F Effects
Implementing dual-resonance class-F oscillators with transformer feedback beyond 60 GHz poses significant challenges due to the limited third-harmonic tank impedance when using small coils with low coupling factors. To address these limitations and leverage the phase noise advantages of class-F operation, this letter introduces a standing-wave oscillator (SWO) topology featuring an on-chip multiband transmission-line (t-line) resonator loaded with harmonically tuned open stubs. The proposed design enhances third-harmonic resonance while facilitating precise alignment of the oscillation frequencies. Three voltage-controlled oscillators (VCOs) were implemented using TSMC’s 65-nm LP technology, demonstrating that the proposed class-F half-wavelength SWO achieves phase noise improvements of 3.1 and 6.4 dB at a 1-MHz offset compared to conventional SWO and transformer-based class-F VCO, respectively.