通过掺杂和等离子体处理提高p型SnOx薄膜晶体管的迁移率

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhong Pan , Yeojin Jeong , MengMeng Chu , Yunhui Jang , Fucheng Wang , Jingwen Chen , Yong-Sang Kim , Jang-Kun Song , Muhammad Quddamah Khokhar , Junsin Yi
{"title":"通过掺杂和等离子体处理提高p型SnOx薄膜晶体管的迁移率","authors":"Zhong Pan ,&nbsp;Yeojin Jeong ,&nbsp;MengMeng Chu ,&nbsp;Yunhui Jang ,&nbsp;Fucheng Wang ,&nbsp;Jingwen Chen ,&nbsp;Yong-Sang Kim ,&nbsp;Jang-Kun Song ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Junsin Yi","doi":"10.1016/j.sse.2025.109181","DOIUrl":null,"url":null,"abstract":"<div><div>P-type semiconductors are less common than their n-type counterparts, and their performance often lags in comparison, which hinders the efficiency of electronic devices. In this study, we demonstrate a two-step approach to enhance the performance of tin oxide based thin-film transistors (TFTs) by combining aluminum (Al) doping and hydrogen plasma treatment. The Al doping significantly enhanced the field-effect mobility of the SnO<sub>x</sub> films, while the hydrogen plasma treatment enabled the transition to p-type conductivity. The fabricated p-type Al-doped SnO<sub>x</sub> TFTs exhibited a threshold voltage of −5.2 V, a field-effect mobility of 1.17 cm<sup>2</sup>/V·s, and I<sub>on</sub>/I<sub>off</sub> of 10<sup>5</sup>. This work provides a novel strategy for optimizing the performance of p-type SnO<sub>x</sub> semiconductors, contributing to the development of low-power complementary metal-oxide semiconductor (CMOS) technologies.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109181"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the mobility of p-type SnOx thin-film transistors through doping and plasma treatment\",\"authors\":\"Zhong Pan ,&nbsp;Yeojin Jeong ,&nbsp;MengMeng Chu ,&nbsp;Yunhui Jang ,&nbsp;Fucheng Wang ,&nbsp;Jingwen Chen ,&nbsp;Yong-Sang Kim ,&nbsp;Jang-Kun Song ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Junsin Yi\",\"doi\":\"10.1016/j.sse.2025.109181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>P-type semiconductors are less common than their n-type counterparts, and their performance often lags in comparison, which hinders the efficiency of electronic devices. In this study, we demonstrate a two-step approach to enhance the performance of tin oxide based thin-film transistors (TFTs) by combining aluminum (Al) doping and hydrogen plasma treatment. The Al doping significantly enhanced the field-effect mobility of the SnO<sub>x</sub> films, while the hydrogen plasma treatment enabled the transition to p-type conductivity. The fabricated p-type Al-doped SnO<sub>x</sub> TFTs exhibited a threshold voltage of −5.2 V, a field-effect mobility of 1.17 cm<sup>2</sup>/V·s, and I<sub>on</sub>/I<sub>off</sub> of 10<sup>5</sup>. This work provides a novel strategy for optimizing the performance of p-type SnO<sub>x</sub> semiconductors, contributing to the development of low-power complementary metal-oxide semiconductor (CMOS) technologies.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"229 \",\"pages\":\"Article 109181\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001261\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001261","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

p型半导体不像n型半导体那么常见,而且它们的性能往往落后于n型半导体,这阻碍了电子设备的效率。在这项研究中,我们展示了一种结合铝(Al)掺杂和氢等离子体处理的两步方法来提高氧化锡薄膜晶体管(TFTs)的性能。Al掺杂显著提高了SnOx薄膜的场效应迁移率,而氢等离子体处理使其向p型电导率过渡。制备的p型掺铝SnOx tft的阈值电压为- 5.2 V,场效应迁移率为1.17 cm2/V·s,离子/离合度为105。这项工作为优化p型SnOx半导体的性能提供了一种新的策略,有助于低功耗互补金属氧化物半导体(CMOS)技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the mobility of p-type SnOx thin-film transistors through doping and plasma treatment
P-type semiconductors are less common than their n-type counterparts, and their performance often lags in comparison, which hinders the efficiency of electronic devices. In this study, we demonstrate a two-step approach to enhance the performance of tin oxide based thin-film transistors (TFTs) by combining aluminum (Al) doping and hydrogen plasma treatment. The Al doping significantly enhanced the field-effect mobility of the SnOx films, while the hydrogen plasma treatment enabled the transition to p-type conductivity. The fabricated p-type Al-doped SnOx TFTs exhibited a threshold voltage of −5.2 V, a field-effect mobility of 1.17 cm2/V·s, and Ion/Ioff of 105. This work provides a novel strategy for optimizing the performance of p-type SnOx semiconductors, contributing to the development of low-power complementary metal-oxide semiconductor (CMOS) technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信