{"title":"一种用于数字乳房断层合成中面外伪影分析的模型。","authors":"Emu Yamamoto, Keisuke Kondo, Masato Imahana, Mayumi Otani, Ayako Yoshida, Miki Okazaki","doi":"10.1177/08953996251351621","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundOut-of-plane artifacts in digital breast tomosynthesis (DBT) can affect image quality, even subtly, and are influenced by the size and z-position of features with contrast of clinical images.ObjectiveTo propose a phantom and metric to further characterize out-of-plane artifacts in DBT.MethodsPhantoms with a signal inserted were manufactured, and the reconstructed planes were obtained using the DBT system. Normalized maximum contrast within the plane area was used to quantitatively evaluate out-of-plane artifacts. The spread of out-of-plane artifacts within the reconstructed plane was qualitatively evaluated by observing the profile within the plane area.ResultsThe larger the signal diameter, the stronger the effect of out-of-plane artifacts on the z-position far from the in-focus plane. When the z-position of the signal was on the upper side of the z-position of the center of X-ray tube rotation, out-of-plane artifacts were stronger on the upper side and weaker on the lower side of the signal. The spread of out-of-plane artifacts in the off-focus plane changed from monomodal to bimodal, with movement away from the signal's location in the z-direction.ConclusionsThis work proposes new phantoms and analysis methods to investigate the characteristics of out-of-plane artifacts, supplementing conventional methods.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251351621"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of a phantom for analyzing out-of-plane artifact in digital breast tomosynthesis.\",\"authors\":\"Emu Yamamoto, Keisuke Kondo, Masato Imahana, Mayumi Otani, Ayako Yoshida, Miki Okazaki\",\"doi\":\"10.1177/08953996251351621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundOut-of-plane artifacts in digital breast tomosynthesis (DBT) can affect image quality, even subtly, and are influenced by the size and z-position of features with contrast of clinical images.ObjectiveTo propose a phantom and metric to further characterize out-of-plane artifacts in DBT.MethodsPhantoms with a signal inserted were manufactured, and the reconstructed planes were obtained using the DBT system. Normalized maximum contrast within the plane area was used to quantitatively evaluate out-of-plane artifacts. The spread of out-of-plane artifacts within the reconstructed plane was qualitatively evaluated by observing the profile within the plane area.ResultsThe larger the signal diameter, the stronger the effect of out-of-plane artifacts on the z-position far from the in-focus plane. When the z-position of the signal was on the upper side of the z-position of the center of X-ray tube rotation, out-of-plane artifacts were stronger on the upper side and weaker on the lower side of the signal. The spread of out-of-plane artifacts in the off-focus plane changed from monomodal to bimodal, with movement away from the signal's location in the z-direction.ConclusionsThis work proposes new phantoms and analysis methods to investigate the characteristics of out-of-plane artifacts, supplementing conventional methods.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251351621\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251351621\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251351621","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Proposal of a phantom for analyzing out-of-plane artifact in digital breast tomosynthesis.
BackgroundOut-of-plane artifacts in digital breast tomosynthesis (DBT) can affect image quality, even subtly, and are influenced by the size and z-position of features with contrast of clinical images.ObjectiveTo propose a phantom and metric to further characterize out-of-plane artifacts in DBT.MethodsPhantoms with a signal inserted were manufactured, and the reconstructed planes were obtained using the DBT system. Normalized maximum contrast within the plane area was used to quantitatively evaluate out-of-plane artifacts. The spread of out-of-plane artifacts within the reconstructed plane was qualitatively evaluated by observing the profile within the plane area.ResultsThe larger the signal diameter, the stronger the effect of out-of-plane artifacts on the z-position far from the in-focus plane. When the z-position of the signal was on the upper side of the z-position of the center of X-ray tube rotation, out-of-plane artifacts were stronger on the upper side and weaker on the lower side of the signal. The spread of out-of-plane artifacts in the off-focus plane changed from monomodal to bimodal, with movement away from the signal's location in the z-direction.ConclusionsThis work proposes new phantoms and analysis methods to investigate the characteristics of out-of-plane artifacts, supplementing conventional methods.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes