黄芩苷通过改善线粒体功能障碍、减少脂质氧化和抑制p38 MAPK途径减轻铜酮诱导的脱髓鞘。

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiting Zhao, Yantuanjin Ma, Shufen Wang
{"title":"黄芩苷通过改善线粒体功能障碍、减少脂质氧化和抑制p38 MAPK途径减轻铜酮诱导的脱髓鞘。","authors":"Qiting Zhao, Yantuanjin Ma, Shufen Wang","doi":"10.3390/antiox14060723","DOIUrl":null,"url":null,"abstract":"<p><p>The occurrence of demyelination in the central nervous system (CNS) causes neurodegenerative lesions. The occurrence and development of demyelination involve multiple pathological mechanisms, including the generation of reactive oxygen species (ROS) caused by mitochondrial dysfunction in microglia and subsequent neuroinflammation. Scutellarin is a natural flavonoid drug with significant neuroprotective effects, including antioxidant, anti-inflammatory, and anti-apoptotic properties, and is widely used in the treatment of neurological diseases. However, the protective effects and mechanisms of scutellarin on demyelination have not yet been elucidated. This study aims to investigate the neuroprotective effects of scutellarin on demyelination and its underlying molecular mechanisms. Our results showed that treatment with scutellarin significantly alleviated Cuprizone-induced myelin damage, neuronal apoptosis, and neurological deficits in mice. In in vitro experiments, scutellarin significantly reduced Cuprizone-copper-induced pro-inflammatory microglia formation and inhibited the secretion of TNF-α, thereby reducing myelin cell damage. Mechanism studies revealed that scutellarin inhibited the secretion of TNF-α by microglia and alleviated myelin cell damage by reducing the excessive production of mitochondrial reactive oxygen species (Mito-ROS), reactive oxygen species (ROS), and malondialdehyde (MDA) induced by Cuprizone-copper in microglia. Finally, scutellarin improved mitochondrial dysfunction in microglia and significantly alleviated myelin cell damage by inhibiting the expression of p38MAPK. In conclusion, our findings demonstrate that scutellarin exerts significant neuroprotective effects on Cuprizone-induced mice by improving mitochondrial dysfunction in microglia, thereby reducing inflammatory responses. This effect is closely associated with the inhibition of the p38MAPK pathway.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scutellarin Alleviates Cuprizone-Induced Demyelination by Improving Mitochondrial Dysfunction, Reducing Lipid Oxidation and Inhibiting the p38 MAPK Pathway.\",\"authors\":\"Qiting Zhao, Yantuanjin Ma, Shufen Wang\",\"doi\":\"10.3390/antiox14060723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The occurrence of demyelination in the central nervous system (CNS) causes neurodegenerative lesions. The occurrence and development of demyelination involve multiple pathological mechanisms, including the generation of reactive oxygen species (ROS) caused by mitochondrial dysfunction in microglia and subsequent neuroinflammation. Scutellarin is a natural flavonoid drug with significant neuroprotective effects, including antioxidant, anti-inflammatory, and anti-apoptotic properties, and is widely used in the treatment of neurological diseases. However, the protective effects and mechanisms of scutellarin on demyelination have not yet been elucidated. This study aims to investigate the neuroprotective effects of scutellarin on demyelination and its underlying molecular mechanisms. Our results showed that treatment with scutellarin significantly alleviated Cuprizone-induced myelin damage, neuronal apoptosis, and neurological deficits in mice. In in vitro experiments, scutellarin significantly reduced Cuprizone-copper-induced pro-inflammatory microglia formation and inhibited the secretion of TNF-α, thereby reducing myelin cell damage. Mechanism studies revealed that scutellarin inhibited the secretion of TNF-α by microglia and alleviated myelin cell damage by reducing the excessive production of mitochondrial reactive oxygen species (Mito-ROS), reactive oxygen species (ROS), and malondialdehyde (MDA) induced by Cuprizone-copper in microglia. Finally, scutellarin improved mitochondrial dysfunction in microglia and significantly alleviated myelin cell damage by inhibiting the expression of p38MAPK. In conclusion, our findings demonstrate that scutellarin exerts significant neuroprotective effects on Cuprizone-induced mice by improving mitochondrial dysfunction in microglia, thereby reducing inflammatory responses. This effect is closely associated with the inhibition of the p38MAPK pathway.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14060723\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060723","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脱髓鞘发生在中枢神经系统(CNS)引起神经退行性病变。脱髓鞘的发生和发展涉及多种病理机制,包括小胶质细胞线粒体功能障碍引起的活性氧(ROS)的产生和随后的神经炎症。黄芩苷是一种天然类黄酮类药物,具有显著的神经保护作用,包括抗氧化、抗炎和抗细胞凋亡等特性,被广泛用于神经系统疾病的治疗。然而,黄芩苷对脱髓鞘的保护作用及其机制尚未阐明。本研究旨在探讨黄芩苷对脱髓鞘的神经保护作用及其分子机制。我们的研究结果表明,黄芩苷治疗可显著减轻铜酮诱导的小鼠髓磷脂损伤、神经元凋亡和神经功能缺损。在体外实验中,黄芩苷可显著降低铜酮铜诱导的促炎小胶质细胞的形成,抑制TNF-α的分泌,从而减轻髓鞘细胞损伤。机制研究表明,黄芩苷抑制小胶质细胞分泌TNF-α,减轻髓磷脂细胞损伤,其机制可能是通过减少铜酮-铜诱导的小胶质细胞线粒体活性氧(Mito-ROS)、活性氧(ROS)和丙二醛(MDA)的过量产生。最后,黄芩苷通过抑制p38MAPK的表达,改善小胶质细胞线粒体功能障碍,显著减轻髓鞘细胞损伤。综上所述,我们的研究结果表明,黄芩苷通过改善小胶质细胞线粒体功能障碍,从而减轻炎症反应,对铜普利酮诱导的小鼠具有显著的神经保护作用。这种作用与p38MAPK通路的抑制密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scutellarin Alleviates Cuprizone-Induced Demyelination by Improving Mitochondrial Dysfunction, Reducing Lipid Oxidation and Inhibiting the p38 MAPK Pathway.

The occurrence of demyelination in the central nervous system (CNS) causes neurodegenerative lesions. The occurrence and development of demyelination involve multiple pathological mechanisms, including the generation of reactive oxygen species (ROS) caused by mitochondrial dysfunction in microglia and subsequent neuroinflammation. Scutellarin is a natural flavonoid drug with significant neuroprotective effects, including antioxidant, anti-inflammatory, and anti-apoptotic properties, and is widely used in the treatment of neurological diseases. However, the protective effects and mechanisms of scutellarin on demyelination have not yet been elucidated. This study aims to investigate the neuroprotective effects of scutellarin on demyelination and its underlying molecular mechanisms. Our results showed that treatment with scutellarin significantly alleviated Cuprizone-induced myelin damage, neuronal apoptosis, and neurological deficits in mice. In in vitro experiments, scutellarin significantly reduced Cuprizone-copper-induced pro-inflammatory microglia formation and inhibited the secretion of TNF-α, thereby reducing myelin cell damage. Mechanism studies revealed that scutellarin inhibited the secretion of TNF-α by microglia and alleviated myelin cell damage by reducing the excessive production of mitochondrial reactive oxygen species (Mito-ROS), reactive oxygen species (ROS), and malondialdehyde (MDA) induced by Cuprizone-copper in microglia. Finally, scutellarin improved mitochondrial dysfunction in microglia and significantly alleviated myelin cell damage by inhibiting the expression of p38MAPK. In conclusion, our findings demonstrate that scutellarin exerts significant neuroprotective effects on Cuprizone-induced mice by improving mitochondrial dysfunction in microglia, thereby reducing inflammatory responses. This effect is closely associated with the inhibition of the p38MAPK pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信