{"title":"地奎特对肠道健康及肠道微生物组组成和功能的影响。","authors":"Jiao He, Qing Tang, Yan-Cun Liu, Li-Jun Wang, Yan-Fen Chai","doi":"10.3390/antiox14060721","DOIUrl":null,"url":null,"abstract":"<p><p>Diquat (DQ) is extensively utilized as a herbicide in farming, and its intake can result in serious systemic toxicity due to its induction of oxidative stress (OS) and disruption of intestinal homeostasis. The gastrointestinal tract is one of the first systems exposed to DQ, and damage to this system can influence the general health of the host. Our review summarizes the toxic effects of DQ on the intestinal barrier integrity, gut microbiome, and microbial metabolites (e.g., short-chain fatty acids [SCFAs], bile acids). By elucidating the mechanisms linking DQ-induced OS to gut dysbiosis, mitochondrial dysfunction, and inflammation, our work provides critical insights into novel therapeutic strategies, including probiotics, antioxidants (e.g., hydroxytyrosol, curcumin), and selenium nanoparticles. These findings address a pressing gap in understanding environmental toxin-related gut pathology and offer potential interventions to mitigate systemic oxidative damage.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Diquat on the Intestinal Health and the Composition and Function of the Gut Microbiome.\",\"authors\":\"Jiao He, Qing Tang, Yan-Cun Liu, Li-Jun Wang, Yan-Fen Chai\",\"doi\":\"10.3390/antiox14060721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diquat (DQ) is extensively utilized as a herbicide in farming, and its intake can result in serious systemic toxicity due to its induction of oxidative stress (OS) and disruption of intestinal homeostasis. The gastrointestinal tract is one of the first systems exposed to DQ, and damage to this system can influence the general health of the host. Our review summarizes the toxic effects of DQ on the intestinal barrier integrity, gut microbiome, and microbial metabolites (e.g., short-chain fatty acids [SCFAs], bile acids). By elucidating the mechanisms linking DQ-induced OS to gut dysbiosis, mitochondrial dysfunction, and inflammation, our work provides critical insights into novel therapeutic strategies, including probiotics, antioxidants (e.g., hydroxytyrosol, curcumin), and selenium nanoparticles. These findings address a pressing gap in understanding environmental toxin-related gut pathology and offer potential interventions to mitigate systemic oxidative damage.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14060721\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060721","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impact of Diquat on the Intestinal Health and the Composition and Function of the Gut Microbiome.
Diquat (DQ) is extensively utilized as a herbicide in farming, and its intake can result in serious systemic toxicity due to its induction of oxidative stress (OS) and disruption of intestinal homeostasis. The gastrointestinal tract is one of the first systems exposed to DQ, and damage to this system can influence the general health of the host. Our review summarizes the toxic effects of DQ on the intestinal barrier integrity, gut microbiome, and microbial metabolites (e.g., short-chain fatty acids [SCFAs], bile acids). By elucidating the mechanisms linking DQ-induced OS to gut dysbiosis, mitochondrial dysfunction, and inflammation, our work provides critical insights into novel therapeutic strategies, including probiotics, antioxidants (e.g., hydroxytyrosol, curcumin), and selenium nanoparticles. These findings address a pressing gap in understanding environmental toxin-related gut pathology and offer potential interventions to mitigate systemic oxidative damage.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.