Santos Blanco, María Del Mar Muñoz-Gallardo, Raquel Hernández, María Ángeles Peinado
{"title":"褪黑素与一氧化氮的相互作用:脑卒中病理生理机制及其意义。","authors":"Santos Blanco, María Del Mar Muñoz-Gallardo, Raquel Hernández, María Ángeles Peinado","doi":"10.3390/antiox14060724","DOIUrl":null,"url":null,"abstract":"<p><p>This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling molecule with diverse roles, interact crucially. In the context of ischemic stroke, NO exhibits a dual role: it can be neuroprotective (primarily via endothelial nitric oxide synthase (eNOS)) or neurotoxic (especially through inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), contributing to the formation of damaging peroxynitrite (ONOO<sup>-</sup>)). Melatonin has consistently demonstrated neuroprotective effects in animal models of stroke. Its key mechanisms related to NO include (1) differential modulation of nitric oxide synthase isoforms, suppressing detrimental iNOS expression/activity while often preserving or enhancing beneficial eNOS; (2) direct scavenging of NO and, critically, highly reactive peroxynitrite, thereby attenuating nitrosative stress; (3) reduction in neuroinflammation, partly by promoting M2 (anti-inflammatory) microglia polarization; and (4) mitochondrial protection and decreased apoptosis. These multifaceted actions of melatonin contribute to reduced infarct volume and improved functional outcomes, underscoring its considerable therapeutic potential for ischemic stroke through the favorable modulation of the melatonin-NO axis.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190141/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology.\",\"authors\":\"Santos Blanco, María Del Mar Muñoz-Gallardo, Raquel Hernández, María Ángeles Peinado\",\"doi\":\"10.3390/antiox14060724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling molecule with diverse roles, interact crucially. In the context of ischemic stroke, NO exhibits a dual role: it can be neuroprotective (primarily via endothelial nitric oxide synthase (eNOS)) or neurotoxic (especially through inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), contributing to the formation of damaging peroxynitrite (ONOO<sup>-</sup>)). Melatonin has consistently demonstrated neuroprotective effects in animal models of stroke. Its key mechanisms related to NO include (1) differential modulation of nitric oxide synthase isoforms, suppressing detrimental iNOS expression/activity while often preserving or enhancing beneficial eNOS; (2) direct scavenging of NO and, critically, highly reactive peroxynitrite, thereby attenuating nitrosative stress; (3) reduction in neuroinflammation, partly by promoting M2 (anti-inflammatory) microglia polarization; and (4) mitochondrial protection and decreased apoptosis. These multifaceted actions of melatonin contribute to reduced infarct volume and improved functional outcomes, underscoring its considerable therapeutic potential for ischemic stroke through the favorable modulation of the melatonin-NO axis.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190141/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14060724\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060724","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology.
This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling molecule with diverse roles, interact crucially. In the context of ischemic stroke, NO exhibits a dual role: it can be neuroprotective (primarily via endothelial nitric oxide synthase (eNOS)) or neurotoxic (especially through inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), contributing to the formation of damaging peroxynitrite (ONOO-)). Melatonin has consistently demonstrated neuroprotective effects in animal models of stroke. Its key mechanisms related to NO include (1) differential modulation of nitric oxide synthase isoforms, suppressing detrimental iNOS expression/activity while often preserving or enhancing beneficial eNOS; (2) direct scavenging of NO and, critically, highly reactive peroxynitrite, thereby attenuating nitrosative stress; (3) reduction in neuroinflammation, partly by promoting M2 (anti-inflammatory) microglia polarization; and (4) mitochondrial protection and decreased apoptosis. These multifaceted actions of melatonin contribute to reduced infarct volume and improved functional outcomes, underscoring its considerable therapeutic potential for ischemic stroke through the favorable modulation of the melatonin-NO axis.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.