异槲皮素通过AKT/mTOR信号通路诱导过度自噬和促进凋亡抑制食管鳞状细胞癌(ESCC)。

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhibin Liu, Ke Huang, Hai Huang, Eungyung Kim, Hyeonjin Kim, Chae Yeon Kim, Dong Joon Kim, Sang In Lee, Sangsik Kim, Do Yoon Kim, Kangdong Liu, Zae Young Ryoo, Mee-Hyun Lee, Lei Ma, Myoung Ok Kim
{"title":"异槲皮素通过AKT/mTOR信号通路诱导过度自噬和促进凋亡抑制食管鳞状细胞癌(ESCC)。","authors":"Zhibin Liu, Ke Huang, Hai Huang, Eungyung Kim, Hyeonjin Kim, Chae Yeon Kim, Dong Joon Kim, Sang In Lee, Sangsik Kim, Do Yoon Kim, Kangdong Liu, Zae Young Ryoo, Mee-Hyun Lee, Lei Ma, Myoung Ok Kim","doi":"10.3390/antiox14060694","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC), one of the most frequent malignant tumors of the digestive system, is marked by a poor prognosis and high mortality rate. There is a critical need for effective therapeutic strategies with minimal side effects. Isoquercitrin (IQ) is a natural compound with potent antioxidant properties in cancer and cardiovascular diseases. However, its specific effects and mechanisms in ESCC remain largely unexplored. This study aims to investigate the effects of IQ in ESCC cells and elucidate the mechanisms underlying its therapeutic effects. Specifically, its impact on cell proliferation, colony formation, migration, and invasion was assessed using cell viability assay, morphology, transwell, and colony formation assays. The effects on apoptosis were evaluated by flow cytometry, while immunofluorescence (IF) staining and Western blotting were performed to confirm the underlying mechanisms. The in vivo anti-cancer effects of IQ were then evaluated using a xenograft tumor model. Our results demonstrate that IQ inhibits ESCC cell growth and colony formation while promoting its apoptosis by enhancing caspase activation and downregulating Bcl-2 expression. Furthermore, IQ suppresses cell migration by modulating the epithelial-mesenchymal transition-related proteins. Additionally, IQ induces excessive autophagy by promoting reactive oxygen species accumulation and inhibiting the AKT/mTOR signaling pathway. Importantly, IQ effectively reduces tumor growth in vivo, highlighting its potential as a therapeutic agent for ESCC.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isoquercitrin Suppresses Esophageal Squamous Cell Carcinoma (ESCC) by Inducing Excessive Autophagy and Promoting Apoptosis via the AKT/mTOR Signaling Pathway.\",\"authors\":\"Zhibin Liu, Ke Huang, Hai Huang, Eungyung Kim, Hyeonjin Kim, Chae Yeon Kim, Dong Joon Kim, Sang In Lee, Sangsik Kim, Do Yoon Kim, Kangdong Liu, Zae Young Ryoo, Mee-Hyun Lee, Lei Ma, Myoung Ok Kim\",\"doi\":\"10.3390/antiox14060694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Esophageal squamous cell carcinoma (ESCC), one of the most frequent malignant tumors of the digestive system, is marked by a poor prognosis and high mortality rate. There is a critical need for effective therapeutic strategies with minimal side effects. Isoquercitrin (IQ) is a natural compound with potent antioxidant properties in cancer and cardiovascular diseases. However, its specific effects and mechanisms in ESCC remain largely unexplored. This study aims to investigate the effects of IQ in ESCC cells and elucidate the mechanisms underlying its therapeutic effects. Specifically, its impact on cell proliferation, colony formation, migration, and invasion was assessed using cell viability assay, morphology, transwell, and colony formation assays. The effects on apoptosis were evaluated by flow cytometry, while immunofluorescence (IF) staining and Western blotting were performed to confirm the underlying mechanisms. The in vivo anti-cancer effects of IQ were then evaluated using a xenograft tumor model. Our results demonstrate that IQ inhibits ESCC cell growth and colony formation while promoting its apoptosis by enhancing caspase activation and downregulating Bcl-2 expression. Furthermore, IQ suppresses cell migration by modulating the epithelial-mesenchymal transition-related proteins. Additionally, IQ induces excessive autophagy by promoting reactive oxygen species accumulation and inhibiting the AKT/mTOR signaling pathway. Importantly, IQ effectively reduces tumor growth in vivo, highlighting its potential as a therapeutic agent for ESCC.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14060694\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食管鳞状细胞癌(ESCC)是消化系统最常见的恶性肿瘤之一,预后差,死亡率高。目前迫切需要副作用最小的有效治疗策略。异槲皮苷(IQ)是一种天然化合物,在癌症和心血管疾病中具有有效的抗氧化特性。然而,其在ESCC中的具体作用和机制在很大程度上仍未被探索。本研究旨在探讨IQ在ESCC细胞中的作用,并阐明其治疗作用的机制。具体而言,通过细胞活力测定、形态学、transwell和集落形成测定来评估其对细胞增殖、集落形成、迁移和侵袭的影响。流式细胞术检测其对细胞凋亡的影响,免疫荧光(IF)染色和Western blotting检测其作用机制。然后使用异种移植肿瘤模型评估IQ的体内抗癌作用。我们的研究结果表明,IQ通过增强caspase激活和下调Bcl-2表达,抑制ESCC细胞生长和集落形成,促进ESCC细胞凋亡。此外,IQ通过调节上皮-间充质过渡相关蛋白抑制细胞迁移。此外,IQ通过促进活性氧积累和抑制AKT/mTOR信号通路诱导过度自噬。重要的是,IQ有效地降低了肿瘤在体内的生长,突出了其作为ESCC治疗剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isoquercitrin Suppresses Esophageal Squamous Cell Carcinoma (ESCC) by Inducing Excessive Autophagy and Promoting Apoptosis via the AKT/mTOR Signaling Pathway.

Esophageal squamous cell carcinoma (ESCC), one of the most frequent malignant tumors of the digestive system, is marked by a poor prognosis and high mortality rate. There is a critical need for effective therapeutic strategies with minimal side effects. Isoquercitrin (IQ) is a natural compound with potent antioxidant properties in cancer and cardiovascular diseases. However, its specific effects and mechanisms in ESCC remain largely unexplored. This study aims to investigate the effects of IQ in ESCC cells and elucidate the mechanisms underlying its therapeutic effects. Specifically, its impact on cell proliferation, colony formation, migration, and invasion was assessed using cell viability assay, morphology, transwell, and colony formation assays. The effects on apoptosis were evaluated by flow cytometry, while immunofluorescence (IF) staining and Western blotting were performed to confirm the underlying mechanisms. The in vivo anti-cancer effects of IQ were then evaluated using a xenograft tumor model. Our results demonstrate that IQ inhibits ESCC cell growth and colony formation while promoting its apoptosis by enhancing caspase activation and downregulating Bcl-2 expression. Furthermore, IQ suppresses cell migration by modulating the epithelial-mesenchymal transition-related proteins. Additionally, IQ induces excessive autophagy by promoting reactive oxygen species accumulation and inhibiting the AKT/mTOR signaling pathway. Importantly, IQ effectively reduces tumor growth in vivo, highlighting its potential as a therapeutic agent for ESCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信