{"title":"发酵乳杆菌ZC529通过激活Keap1-Nrf2信号通路和抑制NF-κB信号通路保护肠上皮屏障完整性","authors":"Zian Yuan, Lang Huang, Zhenguo Hu, Junhao Deng, Yehui Duan, Qian Jiang, Bi'e Tan, Xiaokang Ma, Chen Zhang, Xiongzhuo Tang","doi":"10.3390/antiox14060732","DOIUrl":null,"url":null,"abstract":"<p><p>The probiotic bacteria <i>Lactobacillus fermentum</i> ZC529 (<i>L.f</i> ZC529) has been identified from the colon of the Diannan small-ear (DSE) pig, but its intestinal protective function still lacks investigation. Here, we established a dextran sodium sulfate (DSS)-induced intestinal oxidative stress model in both <i>Drosophila</i> and porcine small intestinal epithelial (IPEC-J2) cell lines to explore the anti-oxidative and anti-inflammatory effects of <i>L.f</i> ZC529. The data showed that the intestinal colonization of <i>L.f</i> ZC529 counteracted DSS-induced intestinal oxidative stress and excessive reactive oxygen species (ROS) generation by activation of the CncC pathway, a homology of the nuclear factor erythroid 2-related factor 2 (Nrf2) in mammalian systems. Moreover, <i>L.f</i> ZC529 supplementation prevented flies from DSS-induced intestinal barrier damage, inflammation, abnormal excretory function, and shortened lifespan. Finally, <i>L.f</i> ZC529 also attenuated DSS-induced intestinal injury in the IPEC-J2 cell line by activating the Keap1-Nrf2 signaling and inhibiting the NF-κB signaling pathways. Together, this study unraveled the profound intestinal protective function of <i>L.f</i> ZC529 and provides its potential application as a new antioxidant in improving animal intestinal health as well as in developing a new probiotic in the food industry.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189399/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Lactobacillus fermentum</i> ZC529 Protects Intestinal Epithelial Barrier Integrity by Activating the Keap1-Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway.\",\"authors\":\"Zian Yuan, Lang Huang, Zhenguo Hu, Junhao Deng, Yehui Duan, Qian Jiang, Bi'e Tan, Xiaokang Ma, Chen Zhang, Xiongzhuo Tang\",\"doi\":\"10.3390/antiox14060732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The probiotic bacteria <i>Lactobacillus fermentum</i> ZC529 (<i>L.f</i> ZC529) has been identified from the colon of the Diannan small-ear (DSE) pig, but its intestinal protective function still lacks investigation. Here, we established a dextran sodium sulfate (DSS)-induced intestinal oxidative stress model in both <i>Drosophila</i> and porcine small intestinal epithelial (IPEC-J2) cell lines to explore the anti-oxidative and anti-inflammatory effects of <i>L.f</i> ZC529. The data showed that the intestinal colonization of <i>L.f</i> ZC529 counteracted DSS-induced intestinal oxidative stress and excessive reactive oxygen species (ROS) generation by activation of the CncC pathway, a homology of the nuclear factor erythroid 2-related factor 2 (Nrf2) in mammalian systems. Moreover, <i>L.f</i> ZC529 supplementation prevented flies from DSS-induced intestinal barrier damage, inflammation, abnormal excretory function, and shortened lifespan. Finally, <i>L.f</i> ZC529 also attenuated DSS-induced intestinal injury in the IPEC-J2 cell line by activating the Keap1-Nrf2 signaling and inhibiting the NF-κB signaling pathways. Together, this study unraveled the profound intestinal protective function of <i>L.f</i> ZC529 and provides its potential application as a new antioxidant in improving animal intestinal health as well as in developing a new probiotic in the food industry.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox14060732\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060732","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lactobacillus fermentum ZC529 Protects Intestinal Epithelial Barrier Integrity by Activating the Keap1-Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway.
The probiotic bacteria Lactobacillus fermentum ZC529 (L.f ZC529) has been identified from the colon of the Diannan small-ear (DSE) pig, but its intestinal protective function still lacks investigation. Here, we established a dextran sodium sulfate (DSS)-induced intestinal oxidative stress model in both Drosophila and porcine small intestinal epithelial (IPEC-J2) cell lines to explore the anti-oxidative and anti-inflammatory effects of L.f ZC529. The data showed that the intestinal colonization of L.f ZC529 counteracted DSS-induced intestinal oxidative stress and excessive reactive oxygen species (ROS) generation by activation of the CncC pathway, a homology of the nuclear factor erythroid 2-related factor 2 (Nrf2) in mammalian systems. Moreover, L.f ZC529 supplementation prevented flies from DSS-induced intestinal barrier damage, inflammation, abnormal excretory function, and shortened lifespan. Finally, L.f ZC529 also attenuated DSS-induced intestinal injury in the IPEC-J2 cell line by activating the Keap1-Nrf2 signaling and inhibiting the NF-κB signaling pathways. Together, this study unraveled the profound intestinal protective function of L.f ZC529 and provides its potential application as a new antioxidant in improving animal intestinal health as well as in developing a new probiotic in the food industry.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.