具有强吸电子基团的简单端封盖策略,可提高场效应迁移率

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xian Huang, Kaiqing Liu, Xinyi Zhu, Xiaochan Zuo, Xiaoliang Mo, Zhengran Yi and Yan Zhao
{"title":"具有强吸电子基团的简单端封盖策略,可提高场效应迁移率","authors":"Xian Huang, Kaiqing Liu, Xinyi Zhu, Xiaochan Zuo, Xiaoliang Mo, Zhengran Yi and Yan Zhao","doi":"10.1039/D5TC00295H","DOIUrl":null,"url":null,"abstract":"<p >Optimizing energy levels and molecular packing is critical for the development of high-mobility polymer semiconductors. However, this is generally challenged by complicated molecular engineering and synthetic procedures. In this study, we propose a facile “strong electron-withdrawing group end-capping” strategy to design high-mobility polymer semiconductors. This approach effectively lowers LUMO energy levels and enhances the π–π stacking interactions of the polymers. Specifically, we demonstrate that the introduction of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1<em>H</em>-inden-1-ylidene) malononitrile (2FIC) into the backbones of PDPPTT and PNDI2T yields polymers (PDPPTT-2FIC and PNDI2T-2FIC) with deeper LUMO energy levels and reduced π–π stacking distances, which facilitate both electron injection and interchain charge transport. Notably, PDPPTT-2FIC exhibits improved ambipolar performance, showing average hole and electron mobilities of 3.23 and 0.54 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, respectively, in comparison to 1.92 and 0.26 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for PDPPTT. Similarly, PNDI2T-2FIC demonstrates enhanced n-type performance with an average electron mobility of 0.74 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> compared to 0.39 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for PNDI2T. These findings establish a facile and feasible pathway for designing high-performance polymer semiconductors.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 25","pages":" 13070-13077"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A facile end-capping strategy with strong electron withdrawing groups for enhancing field-effect mobility†\",\"authors\":\"Xian Huang, Kaiqing Liu, Xinyi Zhu, Xiaochan Zuo, Xiaoliang Mo, Zhengran Yi and Yan Zhao\",\"doi\":\"10.1039/D5TC00295H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optimizing energy levels and molecular packing is critical for the development of high-mobility polymer semiconductors. However, this is generally challenged by complicated molecular engineering and synthetic procedures. In this study, we propose a facile “strong electron-withdrawing group end-capping” strategy to design high-mobility polymer semiconductors. This approach effectively lowers LUMO energy levels and enhances the π–π stacking interactions of the polymers. Specifically, we demonstrate that the introduction of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1<em>H</em>-inden-1-ylidene) malononitrile (2FIC) into the backbones of PDPPTT and PNDI2T yields polymers (PDPPTT-2FIC and PNDI2T-2FIC) with deeper LUMO energy levels and reduced π–π stacking distances, which facilitate both electron injection and interchain charge transport. Notably, PDPPTT-2FIC exhibits improved ambipolar performance, showing average hole and electron mobilities of 3.23 and 0.54 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, respectively, in comparison to 1.92 and 0.26 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for PDPPTT. Similarly, PNDI2T-2FIC demonstrates enhanced n-type performance with an average electron mobility of 0.74 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> compared to 0.39 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for PNDI2T. These findings establish a facile and feasible pathway for designing high-performance polymer semiconductors.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 25\",\"pages\":\" 13070-13077\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00295h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00295h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化能级和分子包装是开发高迁移率聚合物半导体的关键。然而,这通常受到复杂的分子工程和合成程序的挑战。在这项研究中,我们提出了一种简单的“强吸电子基团端盖”策略来设计高迁移率的聚合物半导体。该方法有效地降低了LUMO能级,增强了聚合物的π -π堆叠相互作用。具体来说,我们证明了在PDPPTT和PNDI2T的骨架中引入2-(5,6-二氟-3-氧-2,3-二氢- 1h -独立-1-乙基)丙二腈(2FIC)得到的聚合物(PDPPTT-2FIC和PNDI2T-2FIC)具有更深的LUMO能级和更小的π - π堆积距离,有利于电子注入和链间电荷传输。值得注意的是,PDPPTT- 2fic表现出更好的双极性性能,平均空穴和电子迁移率分别为3.23和0.54 cm2 V−1 s−1,而PDPPTT的平均空穴和电子迁移率分别为1.92和0.26 cm2 V−1 s−1。同样,PNDI2T- 2fic表现出增强的n型性能,平均电子迁移率为0.74 cm2 V−1 s−1,而PNDI2T的平均电子迁移率为0.39 cm2 V−1 s−1。这些发现为设计高性能聚合物半导体提供了一条简单可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A facile end-capping strategy with strong electron withdrawing groups for enhancing field-effect mobility†

A facile end-capping strategy with strong electron withdrawing groups for enhancing field-effect mobility†

Optimizing energy levels and molecular packing is critical for the development of high-mobility polymer semiconductors. However, this is generally challenged by complicated molecular engineering and synthetic procedures. In this study, we propose a facile “strong electron-withdrawing group end-capping” strategy to design high-mobility polymer semiconductors. This approach effectively lowers LUMO energy levels and enhances the π–π stacking interactions of the polymers. Specifically, we demonstrate that the introduction of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (2FIC) into the backbones of PDPPTT and PNDI2T yields polymers (PDPPTT-2FIC and PNDI2T-2FIC) with deeper LUMO energy levels and reduced π–π stacking distances, which facilitate both electron injection and interchain charge transport. Notably, PDPPTT-2FIC exhibits improved ambipolar performance, showing average hole and electron mobilities of 3.23 and 0.54 cm2 V−1 s−1, respectively, in comparison to 1.92 and 0.26 cm2 V−1 s−1 for PDPPTT. Similarly, PNDI2T-2FIC demonstrates enhanced n-type performance with an average electron mobility of 0.74 cm2 V−1 s−1 compared to 0.39 cm2 V−1 s−1 for PNDI2T. These findings establish a facile and feasible pathway for designing high-performance polymer semiconductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信