Mohammed H Karrar Alsharif, Nagi M Bakhit, Juman M Almasaad, Mehmet Emin Onger
{"title":"皮质类固醇用于神经再生:一个叙述性的回顾。","authors":"Mohammed H Karrar Alsharif, Nagi M Bakhit, Juman M Almasaad, Mehmet Emin Onger","doi":"10.2174/0113816128374388250603063716","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the use of advanced microsurgical techniques, around one-third of peripheral nerve injuries still show inadequate functional regeneration and incomplete healing. Peri- and intraneural nerve damage leads to pathophysiologic alterations, including morphological and metabolic changes, where the nerve is disrupted. Animal research shows no proven adjustment drugs for peripheral nerve regeneration, but studies suggest medicines can speed up regeneration using functional and histological parameters after nerve injury. Factors affecting nerve regeneration effectiveness include injury type, age, regeneration time, procedures, and materials. Complete regeneration and functional recovery are rarely achieved, regardless of the kind of pharmaceutical therapy used, necessitating further research into nerve regeneration. Future research could enhance corticosteroid doses with additional drugs, increasing clinical use. This review explores the mechanism of action of corticosteroids Dexamethasone, Betamethasone, and Methylprednisolone in peripheral nerve regeneration experiments, highlighting the potential for enhanced nerve injury.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corticosteroids for Nerve Regeneration: A Narrative Review.\",\"authors\":\"Mohammed H Karrar Alsharif, Nagi M Bakhit, Juman M Almasaad, Mehmet Emin Onger\",\"doi\":\"10.2174/0113816128374388250603063716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the use of advanced microsurgical techniques, around one-third of peripheral nerve injuries still show inadequate functional regeneration and incomplete healing. Peri- and intraneural nerve damage leads to pathophysiologic alterations, including morphological and metabolic changes, where the nerve is disrupted. Animal research shows no proven adjustment drugs for peripheral nerve regeneration, but studies suggest medicines can speed up regeneration using functional and histological parameters after nerve injury. Factors affecting nerve regeneration effectiveness include injury type, age, regeneration time, procedures, and materials. Complete regeneration and functional recovery are rarely achieved, regardless of the kind of pharmaceutical therapy used, necessitating further research into nerve regeneration. Future research could enhance corticosteroid doses with additional drugs, increasing clinical use. This review explores the mechanism of action of corticosteroids Dexamethasone, Betamethasone, and Methylprednisolone in peripheral nerve regeneration experiments, highlighting the potential for enhanced nerve injury.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128374388250603063716\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128374388250603063716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Corticosteroids for Nerve Regeneration: A Narrative Review.
Despite the use of advanced microsurgical techniques, around one-third of peripheral nerve injuries still show inadequate functional regeneration and incomplete healing. Peri- and intraneural nerve damage leads to pathophysiologic alterations, including morphological and metabolic changes, where the nerve is disrupted. Animal research shows no proven adjustment drugs for peripheral nerve regeneration, but studies suggest medicines can speed up regeneration using functional and histological parameters after nerve injury. Factors affecting nerve regeneration effectiveness include injury type, age, regeneration time, procedures, and materials. Complete regeneration and functional recovery are rarely achieved, regardless of the kind of pharmaceutical therapy used, necessitating further research into nerve regeneration. Future research could enhance corticosteroid doses with additional drugs, increasing clinical use. This review explores the mechanism of action of corticosteroids Dexamethasone, Betamethasone, and Methylprednisolone in peripheral nerve regeneration experiments, highlighting the potential for enhanced nerve injury.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.